13.若sin2α=$\frac{2}{3}$,則sin2(α-$\frac{π}{4}$)=( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

分析 利用二倍角公式以及誘導(dǎo)公式化簡所求表達式,然后求解即可.

解答 解:sin2α=$\frac{2}{3}$,
∴sin2(α-$\frac{π}{4}$)=$\frac{1-cos(2α-\frac{π}{2})}{2}$=$\frac{1-sin2α}{2}$=$\frac{1-\frac{2}{3}}{2}$=$\frac{1}{6}$.
故選:D.

點評 本題考查二倍角公式以及誘導(dǎo)公式的應(yīng)用,三角函數(shù)的化簡求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知曲線C:x2=2py(p>0),過曲線C的焦點F斜率為k(k≠0)的直線l0交曲線C于A(x1,y1),B(x2,y2)兩點,x1+x2=-kx1x2,其中x1<x2
(Ⅰ)求C的方程;
(Ⅱ)分別作在點A,B處的切線l1,l2,若動點Q(x0,y0)(x1<x0<x2)在曲線C上,曲線C在點Q處的切線l交l1,l2于點D,E,求證:點F在以DE為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.($\sqrt{x}$-$\frac{1}{2\root{3}{x}}$)100的展開式中,有理項的個數(shù)是(  )
A.11B.13C.15D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在復(fù)平面內(nèi),復(fù)數(shù)Z=$\frac{7+i}{3+4i}$(i是虛數(shù)單位),則復(fù)數(shù)$\overline Z$對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知tanα=2,則$\frac{sinα+cosα}{2sinα+cosα}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知復(fù)數(shù)z1=m+(1-m2)•i(m∈R),z2=cosθ+(λ+2sinθ)•i(λ,θ∈R).
(1)當(dāng)m=3時,求z1的虛部;
(2)若z1=z2,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知船A在燈塔C北偏東85°且到C的距離為2km,船B在燈塔C西偏北25°且到C的距離為$\sqrt{3}$km,則A,B兩船的距離為$\sqrt{13}$km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=acos2x+bsin2x+$\sqrt{3}$的圖象過點($\frac{π}{12}$,2$\sqrt{3}$)和點($\frac{2π}{3}$,-2+$\sqrt{3}$),求:
(1)函數(shù)在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位,再向下平移$\sqrt{3}$個單位,然后保持縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{2}$得到函數(shù)y=g(x),求g(x)的最小正周期和在[-$\frac{π}{4}$,-$\frac{π}{16}$]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.為得到y(tǒng)=cosx的圖象,只需將y=sin(x+$\frac{π}{6}$)的圖象( 。
A.向左平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{3}$個單位D.向右平移$\frac{π}{3}$個單位

查看答案和解析>>

同步練習(xí)冊答案