(2009•普陀區(qū)二模)已知非負實數(shù)x、y滿足不等式組
x+y≤3
x-y≤2
,則目標函數(shù)z=x+2y的最大值為
6
6
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,只需求出直線z=x+2y過點A(0,3)時,z最大值即可.
解答:解:根據(jù)約束條件畫出可行域
直線z=x+2y過點A(0,3)時,
z最大值6,
即目標函數(shù)z=x+2y的最大值為6,
故答案為6.
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)二模)在△ABC中,“cosA=2sinBsinC”是“△ABC為鈍角三角形”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)二模)關于x、y的二元線性方程組
2x+my=5
nx-3y=2
的增廣矩陣經過變換,最后得到的矩陣為
103
011
,則x+y=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)二模)設數(shù)列{an}的前n項和為Sna3=
1
4
.對任意n∈N*,向量
a
=(1,an)
,
b
=(an+1
1
2
)
滿足
a
b
,求
lim
n→∞
Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)二模)關于x、y的二元線性方程組
2x+my=5
nx-3y=2
 的增廣矩陣經過變換,最后得到的矩陣為
10  3
01  1
m
n
=
-1
5
3
-1
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)二模)若n∈N*,(1+
2
)
n
=
2
an+bn
(an、bn∈Z).
(1)求a5+b5的值;
(2)求證:數(shù)列{bn}各項均為奇數(shù).

查看答案和解析>>

同步練習冊答案