【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且tanA=2
(1)求sin2 +cos2A的值;
(2)若a= ,求bc的最大值.
【答案】
(1)解:∵tanA=2 ,A∈(0,π),
∴cosA= ,
∴sin2 +cos2A= [1﹣cos(B+C)]+(2cos2A﹣1)
= (1+cosA)+(2cos2A﹣1)=﹣
(2)解:∵ =cosA= ,
∴ bc=b2+c2﹣a2≥2bc﹣a2,
∴bc≤ a2.
又∵a= ,
∴bc≤ .
當(dāng)且僅當(dāng)b=c= 時(shí),bc= ,故bc的最大值是
【解析】(1)由已知利用同角三角函數(shù)基本關(guān)系式可求cosA的值,利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)所求即可計(jì)算得解.(2)由已知及余弦定理可得 = ,利用基本不等式即可計(jì)算得解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義的相關(guān)知識(shí)可以得到問題的答案,需要掌握正弦定理:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx+c在點(diǎn)x=2處取得極值c﹣16. (Ⅰ)求a,b的值;
(Ⅱ)若f(x)有極大值28,求f(x)在[﹣3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(1)若f(x)的圖象與g(x)的圖象所在兩條曲線的一個(gè)公共點(diǎn)在y軸上,且在該點(diǎn)處兩條曲線的切線互相垂直,求b和c的值。
(2)若a=c=1,b=0,試比較f(x)與g(x)的大小,并說明理由;
(3)若b=c=0,證明:對(duì)任意給定的正數(shù)a,總存在正數(shù)m,使得當(dāng)x時(shí),
恒有f(x)>g(x)成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.
(Ⅰ)求證:圓心O在直線AD上;
(Ⅱ)求證:點(diǎn)C是線段GD的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個(gè)數(shù)為( )
(1)
(2)已知向量 =(6,2)與 =(﹣3,k)的夾角是鈍角,則k的取值范圍是k<0
(3)若向量 能作為平面內(nèi)所有向量的一組基底
(4)若 ,則 在 上的投影為 .
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,若cos(2B+C)+2sinAsinB=0,則△ABC中一定是( )
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.等腰三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)(n, )在直線y= x+ 上. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和為Tn , 并求使不等式Tn> 對(duì)一切n∈N*都成立的最大正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)《課標(biāo)》所倡導(dǎo)的課程理念,切實(shí)提高學(xué)生的綜合素質(zhì),某校高二年級(jí)開設(shè)“趣味數(shù)學(xué)”、“趣味物理”、“趣味化學(xué)”3門任意選修課程,供年級(jí)300位文科生自由選擇2門(不可多選或少選),選課情況如下表:
(Ⅰ)為了解學(xué)生選課情況,現(xiàn)采用分層抽樣方法抽取了三科作業(yè)共50本,統(tǒng)計(jì)發(fā)現(xiàn)“趣味物理”有18本,試根據(jù)這一數(shù)據(jù)估計(jì), 的值;
(Ⅱ)為方便開課,學(xué)校要求, ,計(jì)算的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x|,g(x)=lg(ax2﹣4x+1),若對(duì)任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com