【題目】設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為,直線l與C交于A,B兩點(diǎn),線段AB中點(diǎn)M的橫坐標(biāo)為2.
(1)求C的方程;
(2)若l經(jīng)過F,求l的方程.
【答案】(1)(2)
【解析】
(1)根據(jù)拋物線的準(zhǔn)線方程,即可求得拋物線的標(biāo)準(zhǔn)方程.
(2)作垂直準(zhǔn)線交于,作垂直準(zhǔn)線交于,交軸于,作垂直準(zhǔn)線交于.當(dāng)直線斜率不存在時,不合題意,當(dāng)斜率存在時,設(shè)出直線方程,聯(lián)立拋物線,化簡后由韋達(dá)定理并結(jié)合中點(diǎn)的橫坐標(biāo),即可確定斜率,進(jìn)而求得直線方程.
(1)拋物線的準(zhǔn)線為,
則,解得,
所以拋物線.
(2)作垂直準(zhǔn)線交于,作垂直準(zhǔn)線交于,交軸于,作垂直準(zhǔn)線交于,幾何關(guān)系如下圖所示:
因?yàn)榫段AB中點(diǎn)M的橫坐標(biāo)為2.
則,
由梯形中位線可知
由拋物線定義可知
直線經(jīng)過F,當(dāng)斜率不存在時,不合題意,
所以直線斜率一定存在,
拋物線,則焦點(diǎn).
設(shè)直線的方程為,
聯(lián)立拋物線,化簡可得,
則,
解得,
所以直線的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究玉米品種對產(chǎn)量的 ,某農(nóng)科院對一塊試驗(yàn)田種植的一批玉米共10000株的生長情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計結(jié)果如下:
高莖 | 矮莖 | 總計 | |
圓粒 | 11 | 19 | 30 |
皺粒 | 13 | 7 | 20 |
總計 | 24 | 26 | 50 |
(1)現(xiàn)采用分層抽樣的方法,從該樣本所含的圓粒玉米中取出6株玉米,再從這6株玉米中隨機(jī)選出2株,求這2株之中既有高莖玉米又有矮莖玉米的概率;
(2)根據(jù)玉米生長情況作出統(tǒng)計,是否有95%的把握認(rèn)為玉米的圓粒與玉米的高莖有關(guān)?
附:
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校學(xué)生課外時間的分配情況,擬采用分層抽樣的方法從該校的高一、高二、高三這三個年級中共抽取5個班進(jìn)行調(diào)查,已知該校的高一、高二、高三這三個年級分別有18、6、6個班級.
(Ⅰ)求分別從高一、高二、高三這三個年級中抽取的班級個數(shù);
(Ⅱ)若從抽取的5個班級中隨機(jī)抽取2個班級進(jìn)行調(diào)查結(jié)果的對比,求這2個班級中至少有1個班級來自高一年級的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年12月1日,貴陽市地鐵一號線全線開通,在一定程度上緩解了出行的擁堵狀況.為了了解市民對地鐵一號線開通的關(guān)注情況,某調(diào)查機(jī)構(gòu)在地鐵開通后的某兩天抽取了部分乘坐地鐵的市民作為樣本,分析其年齡和性別結(jié)構(gòu),并制作出如下等高條形圖:
根據(jù)圖中(歲以上含歲)的信息,下列結(jié)論中不一定正確的是( )
A. 樣本中男性比女性更關(guān)注地鐵一號線全線開通
B. 樣本中多數(shù)女性是歲以上
C. 歲以下的男性人數(shù)比歲以上的女性人數(shù)多
D. 樣本中歲以上的人對地鐵一號線的開通關(guān)注度更高
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過點(diǎn)的直線與拋物線交于 兩點(diǎn),又過兩點(diǎn)分別作拋物線的切線,兩條切線交于點(diǎn)。
(1)證明:直線的斜率之積為定值;
(2)求面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為π,它的一個對稱中心為(,0)
(1)求函數(shù)y=f(x)圖象的對稱軸方程;
(2)若方程f(x)=在(0,π)上的解為x1,x2,求cos(x1-x2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個偉大成就.在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,則此數(shù)列的前55項(xiàng)和為( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.“”是“直線與直線相互平行”的充分不必條件
B.“直線垂直平面內(nèi)無數(shù)條直線”是“直線垂直于平面”的充分條件
C.已知、、為非零向量,則“”是“”的充要條件
D.:存在,.則:任意,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若為整數(shù),函數(shù)恰好有兩個零點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com