(本小題滿分12分)
在正四棱錐V - ABCD中,P,Q分別為棱VB,VD的中點, 點M在邊BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."

(I )求證CQ∥平面PAN;
(II)求證:CQ⊥AP.

(I )只需證平面∥平面;(II)只需證。

解析試題分析:(Ⅰ)連接,設(shè),則⊥平面,
連接,設(shè),由,,
 ∴的中點,而的中點,故
上取一點,使,同理,于是
在正方形,∴平面∥平面,又平面
∥平面;                  …6分
(Ⅱ)延長使,連接,則
延長使,連接,,則
∴相交直線所成的不大于的角即為異面直線所成的角
連接,在中,
,∴,即.                  …12分

考點:線面平行的判斷;先線垂直的判斷;正四棱錐的結(jié)構(gòu)特征。
點評:①本題主要考查了空間的線面平行,線線垂直的證明,充分考查了學生的邏輯推理能力,空間想象力,以及識圖能力。②我們要熟練掌握正棱柱、直棱柱、正棱錐的結(jié)構(gòu)特征。正棱柱:底面是正多邊形,側(cè)棱垂直底面;直棱柱:側(cè)棱垂直底面;正棱錐:底面是正多邊形,頂點在底面的投影是底面的中心。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,是棱長為1的正方體,四棱錐中,平面,。

(Ⅰ)求證:
(Ⅱ)求直線與平面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)如圖,在正方體ABCDA1B1C1D1中,E、F為棱AD、AB的中點.

(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖,在三棱錐P-ABC中,底面△ABC為等邊三角形,∠APC=90°,PB=AC=2PA=4,O為AC的中點。

(Ⅰ)求證:BO⊥PA;
(Ⅱ)判斷在線段AC上是否存在點Q(與點O不重合),使得△PQB為直角三角形?若存在,試找出一個點Q,并求的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;
(2)求PC與平面PAB所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在平行四邊形ABCD中,AB=1,BD,∠ABD=90°,EBD上的一個動點,現(xiàn)將該平行四邊形沿對角線BD折成直二面角ABDC,如圖2所示.

(1)若F、G分別是AD、BC的中點,且AB∥平面EFG,求證:CD∥平面EFG
(2)當圖1中AEEC最小時,求圖2中二面角AECB的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1與C1B所成角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在四棱錐中,底面是矩形,平面,.于點,中點.

(1)用空間向量證明:AM⊥MC,平面⊥平面
(2)求直線與平面所成的角的正弦值;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在四棱錐中,底面為矩形,平面,點在線段上,平面.

(Ⅰ)證明:平面;
(Ⅱ)若,,求二面角的正切值.

查看答案和解析>>

同步練習冊答案