如圖,有一圓盤,其中陰影部分的圓心角為45°,向圓盤內(nèi)投鏢,如果某人每次都投入圓盤內(nèi),那么他投中陰影部分的概率為
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:由題意,所求屬于幾何概型;要計(jì)算投中陰影部分的概率,根據(jù)每次都投鏢都能投入圓盤內(nèi),圓盤對應(yīng)的圓心角的度數(shù)為360°,陰影部分的圓心角為45°,代入幾何概型概率公式,即可得到答案.
解答: 解:圓盤對應(yīng)的圓心角的度數(shù)為360°,
陰影部分的圓心角為45°
故投中陰影部分的概率P=
45
360
=
1
8

故答案為:
1
8
點(diǎn)評:本題考查了幾何概型,找出所有基本事件對應(yīng)的幾何量是圓心角為360°的角度,滿足條件的幾何量是圓心角為45°的角度,是解答本題的關(guān)鍵,本題也可利用面積計(jì)算,即基本事件總數(shù)對應(yīng)圓面積,滿足條件的基本事件對應(yīng)幾何量為扇形面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
a
b
-1,其中向量
a
=(
3
sin2x,cosx),
b
=(1,2cosx)(x∈R).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,f(A)=2,a=
3
,B=
π
4
,求邊長b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某項(xiàng)綜合能力測試中抽取100人的成績(5分制),統(tǒng)計(jì)如表,則這100人成績的方差為
 

成績(分)54321
人數(shù)502510100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=4n+(-1)n-1λ•2bn=4n+(-1)n-1λ•2 an(λ為非零整數(shù),n∈N*),試確定λ的值,使得對任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為2,圓心角為
π
3
的扇形的面積為( 。
A、
3
B、π
C、
3
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式ax2+bx+2>0的解集為(-
1
2
,
1
3
)
,其中a,b為常數(shù),則不等式2x2+bx+a<0的解集是( 。
A、(-3,2)
B、(-2,2)
C、(-2,3)
D、(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)在區(qū)間(1,+∞)上是增函數(shù),且函數(shù)F(x)=f(x+1)的圖象關(guān)于y軸對稱,則( 。
A、f(-1)>f(2)
B、f(0)>f(2)
C、f(-2)=f(2)
D、f(-4)=f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是( 。
A、若ac≤bc,則a≤b
B、若a2≥b2,則a≥b
C、若a<b,c<0,則 a-c>b-c
D、若
a
b
,則a≥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=lnx,則f(
1
e
)的值是( 。
A、eB、0C、-1D、1

查看答案和解析>>

同步練習(xí)冊答案