(2010•湖北模擬)曲線y=2-
1
2
x2
y=
1
4
x3-2
在交點(2,0)處的切線的夾角大小為
π
4
π
4
分析:先分別求出兩個函數(shù)在切點處的導數(shù)得到兩切線的斜率,最后利用夾角公式求出兩切線的夾角即可.
解答:解:∵y′=(2-
1
2
x2)′=-x,∴y′|x=2=-2.
又y′=(
x3
4
-2)′=
3
4
x2,∴當x=2時,y′=3.
∴兩曲線在交點處的切線斜率分別為-2、3,
|
-2-3
1+(-2)×3
|=1.
∴夾角為
π
4

故答案為:
π
4
點評:本題主要考查了利用導數(shù)研究曲線上某點切線方程,以及夾角公式的運用等基礎題知識,考查運算求解能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•湖北模擬)如圖,正方體AC1的棱長為1,連接AC1,交平面A1BD于H,則以下命題中,錯誤的命題是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•湖北模擬)如圖,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,點E是PD的中點.
(1)證明:AC⊥PB;
(2)證明:PB∥平面AEC;
(3)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•湖北模擬)等比數(shù)列{an}的公比為q,則“a1>0,且q>1”是“對于任意正自然數(shù)n,都有an+1>an”的(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•湖北模擬)△ABC內(nèi)接于以O為圓心,半徑為1的圓,且3
OA
+4
OB
+5
OC
=
0
,則△ABC的面積為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•湖北模擬)已知數(shù)列|an|滿足:an=n+1+
8
7
an+1
,且存在大于1的整數(shù)k使ak=0,m=1+
8
7
a1

(1)用k表示m(化成最簡形式);
(2)若m是正整數(shù),求k與m的值;
(3)當k大于7時,試比較7(m-49)與8(k2-k-42)的大。

查看答案和解析>>

同步練習冊答案