8.設(shè)函數(shù)f(x)=|x+1|
(1)求不等式f(x)<2x的解集;
(2)若2f(x)+|x-a|>8對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)去掉絕對(duì)值號(hào),得到關(guān)于x的不等式組,解出即可;(2)問(wèn)題轉(zhuǎn)化為f(x)+|x-a|>3對(duì)任意x∈R恒成立,即|a+1|>3,解出即可.

解答 解:(1)由f(x)<2x,得:|x+1|<2x,
則-2x<x+1<2x,
即$\left\{\begin{array}{l}{x+1<2x}\\{x+1>-2x}\end{array}\right.$,解得:x>1,
故不等式的解集是(1,+∞);
(2)∵f(x)+|x-a|=|x+1|+|x-a|≥|x+1-x+a|=|a+1|,
又2f(x)+|x-a|>8=23對(duì)任意x∈R恒成立,
即f(x)+|x-a|>3對(duì)任意x∈R恒成立,
∴|a+1|>3,解得:a>2或a<-4,
故a的范圍是(-∞,-4)∪(2,+∞).

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問(wèn)題,考查絕對(duì)值的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=x0與g(x)=1B.f(x)=x與g(x)=$\frac{{x}^{2}}{x}$
C.f(x)=x2-1與g(x)=x2+1D.f(x)=|x|與g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2}$,Sn=n2an-n(n-1),n=1,2,…
(1)證明:數(shù)列{$\frac{n+1}{n}$Sn}是等差數(shù)列,并求Sn
(2)設(shè)bn=$\frac{{S}_{n}}{{n}^{3}+3{n}^{2}}$,求證:b1+b2+…+bn<$\frac{5}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將函數(shù)y=sinπx的圖象沿x軸伸長(zhǎng)到橫坐標(biāo)為原來(lái)的2倍,再向左平移1個(gè)單位,得到的圖象對(duì)應(yīng)的解析式是( 。
A.$y=sin(\frac{πx}{2}+1)$B.y=sin(2πx+1)C.$y=cos\frac{πx}{2}$D.$y=-cos\frac{πx}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),P是雙曲線C右支上一點(diǎn),且|PF2|=|F1F2|.若直線PF1與圓x2+y2=a2相切,則雙曲線的離心率為(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)拋物線y2=2px(p>0)的焦點(diǎn)作傾斜角為$\frac{π}{3}$的直線交拋物線于A,B兩點(diǎn),若|AB|=6,則焦點(diǎn)弦中大小為$\frac{9}{2}$的有幾條( 。
A.1條B.2條C.0條D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.兩個(gè)正數(shù)a,b的等差中項(xiàng)為2,等比中項(xiàng)為$\sqrt{3}$,且a>b,則雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的離心率e等于$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知圓 C:x2+y2-2x-15=0,直線l:3x+4y+7=0,則圓C上到直線l距離等于2的點(diǎn)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某城市100戶居民的月平均用水量(單位:噸),按[0.5,1),[1,1.5),[1.5,2),[2,2.5),[2.5,3),[3,3.5),[3.5,4),[4,4.5)分組的頻率分布直方圖如圖.
(1)求月平均用水量的眾數(shù)和中位數(shù);
(2)在月平均用水量為[1.5,2),[2,2.5),[2.5,3)的三組用戶中,用分層抽樣的方法抽取12戶居民參加用水價(jià)格聽(tīng)證會(huì),則月平均用水量在[2,2.5)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

同步練習(xí)冊(cè)答案