【題目】在城市舊城改造中,某小區(qū)為了升級(jí)居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個(gè)面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價(jià)為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價(jià)為100元/.設(shè)矩形的長為.
(1)設(shè)總造價(jià)(元)表示為長度的函數(shù);
(2)當(dāng)取何值時(shí),總造價(jià)最低,并求出最低總造價(jià).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且曲線在點(diǎn)處的切線方程為.
(1)求實(shí)數(shù)的值及函數(shù)的最大值;
(2)證明:對(duì)任意的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】使用支付寶和微信支付已經(jīng)成為廣大消費(fèi)者最主要的消費(fèi)支付方式,某超市通過統(tǒng)計(jì)發(fā)現(xiàn)一周內(nèi)超市每天的凈利潤(萬元)與每天使用支付寶和微信支付的人數(shù)(千人)具有線性相關(guān)關(guān)系,并得到最近一周的7組數(shù)據(jù)如下表,并依此作為決策依據(jù).
(1)作出散點(diǎn)圖,并求出回歸方程(,精確到);
(2)超市為了刺激周一消費(fèi),擬在周一開展使用支付寶和微信支付隨機(jī)抽獎(jiǎng)活動(dòng),總獎(jiǎng)金7萬元.根據(jù)市場調(diào)查,抽獎(jiǎng)活動(dòng)能使使用支付寶和微信支付消費(fèi)人數(shù)增加7千人,試決策超市是否有必要開
展抽獎(jiǎng)活動(dòng)?
(3)超市管理層決定:從周一到周日,若第二天的凈利潤比前一天增長超過兩成,則對(duì)全體員工進(jìn)行獎(jiǎng)勵(lì),在(Ⅱ)的決策下,求全體員工連續(xù)兩天獲得獎(jiǎng)勵(lì)的概率.
參考數(shù)據(jù): ,,,.
參考公式:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù),按十位數(shù)字為莖,個(gè)位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.
(1)求的值;
(2)分別求出甲、乙兩組數(shù)據(jù)的方差和,并由此分析兩組技工的加工水平;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市通過隨機(jī)詢問100名不同年級(jí)的學(xué)生是否能做到“扶跌倒老人”,得到如下列聯(lián)表:
做不到 | 能做到 | |
高年級(jí) | 45 | 10 |
低年級(jí) | 30 | 15 |
則下列結(jié)論正確的是( )
附參照表:
0.10 | 0.025 | 0.01 | |
2.706 | 5.024 | 6.635 |
參考公式:,其中
A. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“學(xué)生能否做到‘扶跌倒老人’與年級(jí)高低有關(guān)”
B. 在犯錯(cuò)誤的概率不超過的前提下,“學(xué)生能否做到‘扶跌倒老人’與年級(jí)高低無關(guān)”
C. 有以上的把握認(rèn)為“學(xué)生能否做到‘扶跌倒老人’與年級(jí)高低有關(guān)”
D. 有以上的把握認(rèn)為“學(xué)生能否做到‘扶跌倒老人’與年級(jí)高低無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖的程序框圖,若輸出的y值為5,則判斷框中可填入的條件是( )
A.i<3
B.i<4
C.i<5
D.i<6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知命題:實(shí)數(shù)滿足,命題:實(shí)數(shù)滿足方程表示的焦點(diǎn)在軸上的橢圓,且是的充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)設(shè)命題:關(guān)于的不等式的解集是;:函數(shù)的定義域?yàn)?/span>.若是真命題,是假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)的發(fā)展推動(dòng)著科技的進(jìn)步,正是基于線性代數(shù)、群論等數(shù)學(xué)知識(shí)的極化碼原理的應(yīng)用,華為的5G技術(shù)領(lǐng)先世界.目前某區(qū)域市場中5G智能終端產(chǎn)品的制造由H公司及G公司提供技術(shù)支持據(jù)市場調(diào)研預(yù)測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品分別占比及假設(shè)兩家公司的技術(shù)更新周期一致,且隨著技術(shù)優(yōu)勢的體現(xiàn)每次技術(shù)更新后,上一周期采用G公司技術(shù)的產(chǎn)品中有20%轉(zhuǎn)而采用H公司技術(shù),采用H公司技術(shù)的僅有5%轉(zhuǎn)而采用G公司技術(shù)設(shè)第n次技術(shù)更新后,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品占比分別為及,不考慮其它因素的影響.
(1)用表示,并求實(shí)數(shù)使是等比數(shù)列;
(2)經(jīng)過若干次技術(shù)更新后該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能否達(dá)到75%以上?若能,至少需要經(jīng)過幾次技術(shù)更新;若不能,說明理由?(參考數(shù)據(jù):)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com