某同學(xué)在研究函數(shù)f(x)=
x2+1
+
x2-6x+10
的性質(zhì)時(shí),受到兩點(diǎn)間距離公式的啟發(fā),將f(x)變形為f(x)=
(x-0)2+(0-1)2
+
(x-3)2+(0+1)2
,則f(x)表示|PA|+|PB|(如左圖),則 
①f(x)的圖象是中心對(duì)稱圖形;
②f(x)的圖象是軸對(duì)稱圖形;
③函數(shù)f(x)的值域?yàn)?span id="zm9ht1r" class="MathJye">[
13
,+∞);
④函數(shù)f(x)在區(qū)間(-∞,3)上單調(diào)遞減;
⑤方程f[f(x)]=1+
10
有兩個(gè)解.
上述關(guān)于函數(shù)f(x)的描述正確的個(gè)數(shù)為( 。
A、1B、2C、3D、4
考點(diǎn):兩點(diǎn)間距離公式的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)的幾何意義可得函數(shù)的值域及單調(diào)性,結(jié)合函數(shù)的值域和單調(diào)性逐個(gè)選項(xiàng)驗(yàn)證即可作出判斷.
解答: 解:∵函數(shù)f(x)的最小值為|AB|=
32+(1+1)2
=
13
,
∴函數(shù)的值域[
13
,+∞)
,顯然③正確;
由函數(shù)的值域知,函數(shù)圖象不可能為中心對(duì)稱圖形,故①錯(cuò)誤;
又∵直線AB與x軸交點(diǎn)的橫坐標(biāo)為
3
2
,顯然有f(
3
2
-x)=f(
3
2
+x)

∴函數(shù)的圖象關(guān)于直線x=
3
2
對(duì)稱,故②正確;
由函數(shù)的幾何意義知函數(shù)在區(qū)間(-∞,
3
2
]
上單調(diào)遞減,在區(qū)間[
3
2
,+∞)
上單調(diào)遞增,故④錯(cuò)誤;
令t=f(x),由f(t)=1+
10
得t=0或t=3,由函數(shù)的值域可知不成立,∴方程無解,故⑤錯(cuò)誤,
故選:B.
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì),涉及兩點(diǎn)間的距離公式,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x
+
1
x-1
的定義域?yàn)?div id="vex9wnm" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
cosx,cosx),
b
=(0,sinx),
c
=(sinx,cosx),
d
=(sinx,sinx).
(Ⅰ)當(dāng)x=
π
4
時(shí),求向量
a
、
b
的夾角;
(Ⅱ)當(dāng)x∈[0,
π
2
]
時(shí),求
c
d
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx-2交拋物線y2=8x于A、B兩點(diǎn),若弦AB的中點(diǎn)M(2,m),則k=( 。
A、2或-1B、-1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:冪函數(shù)y=x
2
3
在(-∞,0)上單調(diào)遞減;命題q:已知函數(shù)f(x)=x3-3x2+m,若a,b,c∈[1,3],且f(a),f(b),f(c)能構(gòu)成一個(gè)三角形的三邊長(zhǎng),且4<m<8,則(  )
A、p且q為真命題
B、p或q為假命題
C、(¬p)且q為真命題
D、p且(¬q)為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

商場(chǎng)銷售某一品牌的羊毛衫,購買人數(shù)n是羊毛衫標(biāo)價(jià)x的一次函數(shù),標(biāo)價(jià)越高,購買人數(shù)越少.已知標(biāo)價(jià)為每件300元時(shí),購買人數(shù)為零.標(biāo)價(jià)為每件225元時(shí),購買人數(shù)為75人,若這種羊毛衫的成本價(jià)是100元/件,商場(chǎng)以高于成本價(jià)的相同價(jià)格(標(biāo)價(jià))出售,問:
(1)商場(chǎng)要獲取最大利潤(rùn),羊毛衫的標(biāo)價(jià)應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤(rùn)只是一種“理想結(jié)果”,如果商場(chǎng)要獲得最大利潤(rùn)的75%,那么羊毛衫的標(biāo)價(jià)為每件多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y  2=4x的準(zhǔn)線與x軸交于M點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),過M點(diǎn)斜率為k的直線l與拋物線C交于A、B兩點(diǎn).
(Ⅰ)若|AM|=
5
4
|AF|,求k的值;
(Ⅱ)是否存在這樣的k,使得拋物線C上總存在點(diǎn)Q(x0,y0)滿足QA⊥QB,若存在,求k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lg(x2-2x)
9-x2
的定義域?yàn)锳,
(1)求A;
(2)若B={x|x2-2x-3≥0},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+asinx-a2+2a+5
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最大值;
(2)若函數(shù)f(x)有最大值2,試求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案