【題目】已知正方形的邊長為,將沿對角線折起,使平面平面,得到如圖所示的三棱錐,若為邊的中點(diǎn),分別為上的動點(diǎn)(不包括端點(diǎn)),且,設(shè),則三棱錐的體積取得最大值時,三棱錐的內(nèi)切球的半徑為_______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,若函數(shù)有三個不同的零點(diǎn),,(其中),則的取值范圍為__________.
【答案】
【解析】如圖:
,,作出函數(shù)圖象如圖所示
,,作出函數(shù)圖象如圖所示
,由有三個不同的零點(diǎn)
,如圖
令
得
為滿足有三個零點(diǎn),如圖可得
,
點(diǎn)睛:本題考查了函數(shù)零點(diǎn)問題,先由導(dǎo)數(shù)求出兩個函數(shù)的單調(diào)性,繼而畫出函數(shù)圖像,再由函數(shù)的零點(diǎn)個數(shù)確定參量取值范圍,將問題轉(zhuǎn)化為函數(shù)的兩根問題來求解,本題需要化歸轉(zhuǎn)化,函數(shù)的思想,零點(diǎn)問題等較為綜合,有很大難度。
【題型】填空題
【結(jié)束】
17
【題目】已知等比數(shù)列的前項和為,且滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了估計某校某次數(shù)學(xué)考試的情況,現(xiàn)從該校參加考試的600名學(xué)生中隨機(jī)抽出60名學(xué)生,其數(shù)學(xué)成績(百分制)均在內(nèi),將這些成績分成六組…,得到如圖所示的部分頻率分布直方圖.
(1)求抽出的60名學(xué)生中數(shù)學(xué)成績在內(nèi)的人數(shù);
(2)若規(guī)定成績不小于85分為優(yōu)秀,則根據(jù)頻率分布直方圖,估計該校參加考試的學(xué)生數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù);
(3)試估計抽出的60名學(xué)生的數(shù)學(xué)成績的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律,每生產(chǎn)該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少百臺產(chǎn)品時,可使利潤最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】填空:
(1)如果,且,則是第________象限角;
(2)如果,且,則是第________象限角;
(3)如果,且,則是第________象限角;
(4)如果,且,則是第________象限角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,是以為斜邊的直角三角形,,,,.
(1)若線段上有一個點(diǎn),使得平面,請確定點(diǎn)的位置,并說明理由;
(2)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐試驗.受其啟發(fā),我們也可以通過設(shè)計下面的試驗來估計的值,試驗步驟如下:①先請高二年級 500名同學(xué)每人在小卡片上隨機(jī)寫下一個實數(shù)對;②若卡片上的能與1構(gòu)成銳角三角形,則將此卡片上交;③統(tǒng)計上交的卡片數(shù),記為;④根據(jù)統(tǒng)計數(shù)估計的值.假如本次試驗的統(tǒng)計結(jié)果是,那么可以估計的值約為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象過點(diǎn)(1,13),且函數(shù)對稱軸方程為.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),求在區(qū)間上的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)(0<≤10)與銷售價格(單位:萬元/輛)進(jìn)行整理,得到如下的對應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)試求關(guān)于的回歸直線方程;
(附:回歸方程中,
(Ⅱ)已知每輛該型號汽車的收購價格為萬元,根據(jù)(Ⅰ)中所求的回歸方程,
預(yù)測為何值時,小王銷售一輛該型號汽車所獲得的利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com