【題目】已知函數(shù)f(x)=lnx﹣ .
(1)求函數(shù)f(x)的單調區(qū)間;
(2)設g(x)=﹣x2+2bx﹣4,若對任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2) 恒成立,求實數(shù)b的取值范圍.
【答案】
(1)解:f(x)=lnx﹣ 的定義域是(0,+∞).
f′(x)= = ,
由x>0及f′(x)>0得1<x<3;由x>0及f′(x)<0得0<x<1或x>3,
故函數(shù)f(x)的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是(0,1),(3,+∞).
(2)解:由(1)知,f(x)在(0,1)上單調遞減,在(1,3)上單調遞增,
所以當x∈(0,2)時, ,
對任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,
問題等價于﹣ ≥g(x)對任意x∈[1,2]恒成立,即 恒成立.
不等式可變?yōu)閎 ,
因為x∈[1,2],所以 ,當且僅當 ,即x= 時取等號.
所以b ,
故實數(shù)b的取值范圍是( ]
【解析】(1)求f′(x),在函數(shù)定義域內利用導數(shù)與函數(shù)單調性關系解不等式f′(x)>0,f′(x)<0即可.(2)由題意不等式f(x1)≥g(x2)恒成立,可轉化為f(x)min≥g(x)max , 或分離出參數(shù)后再求函數(shù)最值.
【考點精析】利用利用導數(shù)研究函數(shù)的單調性對題目進行判斷即可得到答案,需要熟知一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,則下列關于函數(shù)f(x)的說法正確的是( )
A.為奇函數(shù)且在R上為增函數(shù)
B.為偶函數(shù)且在R上為增函數(shù)
C.為奇函數(shù)且在R上為減函數(shù)
D.為偶函數(shù)且在R上為減函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
①定義在R上的函數(shù)f(x)滿足f(﹣2)=f(2),則f(x)不是奇函數(shù)
②定義在R上的函數(shù)f(x)恒滿足f(﹣x)=|f(x)|,則f(x)一定是偶函數(shù)
③一個函數(shù)的解析式為y=x2 , 它的值域為{0,1,4},這樣的不同函數(shù)共有9個
④設函數(shù)f(x)=lnx,則對于定義域中的任意x1 , x2(x1≠x2),恒有 ,
其中為真命題的序號有(填上所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直線坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為.
(1)直線的普通方程和曲線的參數(shù)方程;
(2)設點在上, 在處的切線與直線垂直,求的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家規(guī)定個人稿費納稅辦法是:不超過800元的不納稅;超過800元而不超過4 000元的按超過800元部分的14%納稅;超過4 000元的按全部稿酬的11%納稅.已知某人出版一本書,共納稅420元,這個人應得稿費(扣稅前)為( )
A.2800元
B.3000元
C.3800元
D.3818元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個周期后,所得圖象對應的函數(shù)為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin(2x﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小區(qū)停車場的收費標準為:每車每次停車時間不超過2小時免費,超過2小時的部分每小時收費1元(不足1小時的部分按1小時計算).現(xiàn)有甲乙兩人相互獨立到停車場停車(各停車一次),且兩人停車的時間均不超過5小時,設甲、乙兩人停車時間(小時)與取車概率如下表所示:
(1)求甲、乙兩人所付車費相同的概率;
(2)設甲、乙兩人所付停車費之和為隨機變量,求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com