精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線的焦點為,傾斜角為的直線過點與拋物線交于兩點, 為坐標原點, 的面積為.

(1)求;

(2)設點為直線與拋物線在第一象限的交點,過點的斜率分別為的兩條弦,如果,證明直線過定點,并求出定點坐標.

【答案】(1);(2)直線經過定點.

【解析】試題分析:

(1)焦點坐標,聯(lián)立直線方程與拋物線方程得.

結合韋達定理和面積公式得到關于實數p的方程: ,

解得.

(2)很明顯都不等于零.設直線,與拋物線方程聯(lián)立,結合韋達定理可得直線方程為,則直線經過定點.

試題解析:

(1),則直線的方程為,代入拋物線方程得.

,則.

根據拋物線定義,所以.

坐標原點到直線的距離 .

所以的面積為,解得.

(2)拋物線方程為,直線,即,解得.

.根據題意,顯然都不等于零.

直線,即,代入拋物線方程得.

由于點在拋物線上,依據根與系數的關系得,所以. 同理.

而直線的方程為,因為也拋物線上,所以代入上述方程并整理得,

,

.

,則,代入的方程得,

整理得

若上式對任意變化的恒成立,則,解得

故直線經過定點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】直線xy10被圓(x1)2y23截得的弦長等于(  )

A. B. 2

C. 2 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知, 為拋物線上的兩個動點,其中,且

(1)求證:線段的垂直平分線恒過定點,并求出點坐標;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的各項均為正數,其前n項的和為Sn , 且對任意的m,n∈N*,
都有(Sm+n+S12=4a2ma2n
(1)求 的值;
(2)求證:{an}為等比數列;
(3)已知數列{cn},{dn}滿足|cn|=|dn|=an , p(p≥3)是給定的正整數,數列{cn},{dn}的前p項的和分別為Tp , Rp , 且Tp=Rp , 求證:對任意正整數k(1≤k≤p),ck=dk

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1)證明:PB∥平面AEC;
(2)設AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知長方體ABCD﹣A1B1C1D1中,E,M,N分別是BC,AE,CD1的中點,AD=AA1=a,AB=2a.求證:MN∥平面ADD1A1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l1:y=kx﹣1與雙曲線x2﹣y2=1的左支交于A,B兩點.
(1)求斜率k的取值范圍;
(2)若直線l2經過點P(﹣2,0)及線段AB的中點Q且l2在y軸上截距為﹣16,求直線l1的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的一個短軸端點及兩個焦點構成的三角形的面積為,圓C方程為.

(1)求橢圓及圓C的方程;

(2)過原點O作直線l與圓C交于A,B兩點,若,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖莖葉圖記錄了甲、乙兩組各四名同學的植樹棵樹.乙組記錄中有一個數據模糊,無法確認,在圖中以X表示.
(注:方差 ,其中 為x1 , x2 , …xn的平均數)

(1)如果X=8,求乙組同學植樹棵樹的平均數和方差;
(2)如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數為19的概率.

查看答案和解析>>

同步練習冊答案