【題目】若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對值不超過時(shí),則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機(jī)抽取5000件進(jìn)行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計(jì)算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:)將所得數(shù)據(jù)分組,得到如下頻率分布表:

1)將上面表格中缺少的數(shù)據(jù)填充完整;

2)估計(jì)該廠生產(chǎn)的此種產(chǎn)品中,不合格的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間內(nèi)的概率

3)現(xiàn)對該廠這種產(chǎn)品的某個(gè)批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品,據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).

【答案】(1)

分 組

頻 數(shù)

頻 率

[-3,-2)

5

0.10

[-2,-1)

8

0.16

(1,2]

25

0.50

(2,3]

10

0.20

(3,4]

2

0.04

合計(jì)

50

1.00

(2) 0.70 (3) 1980

【解析】

試題(1)根據(jù)頻率的定義可得正解;(2)不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間內(nèi)的概率為;(3)合格品的件數(shù)為(件).

試題解析:

解:(1

分 組

頻 數(shù)

頻 率
















合計(jì)



2)不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間內(nèi)的概率為.

:不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間內(nèi)的概率為.

3)合格品的件數(shù)為(件).

:合格品的件數(shù)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線的對稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),在拋物線上且滿足,當(dāng)取最大值時(shí),點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)的最大值;

(2)令,其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知函數(shù),其中是常數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

)若存在實(shí)數(shù),使得關(guān)于的方程上有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的左、右焦點(diǎn)分別是,拋物線的焦點(diǎn)與點(diǎn)重合,點(diǎn)是拋物線與雙曲線的一個(gè)交點(diǎn),如圖所示.

(1)求雙曲線及拋物線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與雙曲線的過一、三象限的漸近線平行,且交拋物線于兩點(diǎn),交雙曲線于點(diǎn),若點(diǎn)是線段的中點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中是自然常數(shù).

(1)判斷函數(shù)內(nèi)零點(diǎn)的個(gè)數(shù),并說明理由;

(2) , ,使得不等式成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)滿足:對于s,t∈[0,+∞),都有f(s)≥0f(t)≥0,且f(s)+f(t)≤f(s+t)則稱函數(shù)f (x)“T函數(shù)”.

(I)試判斷函數(shù)f1(x)=x2f2(x)=lg(x+1)是否是“T函數(shù)”,并說明理由;

(Ⅱ)設(shè)f (x)“T函數(shù)”,且存在x0∈[0+∞),使f(f(x0))=x0.求證f (x0) =x0

(Ⅲ)試寫出一個(gè)“T函數(shù)”f(x),滿足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的個(gè)數(shù)最少.(只需寫出結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“人機(jī)大戰(zhàn),柯潔哭了,機(jī)器贏了”,2017年5月27日,歲的世界圍棋第一人柯潔不敵人工智能系統(tǒng)AlphaGo,落淚離席.許多人認(rèn)為這場比賽是人類的勝利,也有許多人持反對意見,有網(wǎng)友為此進(jìn)行了調(diào)查.在參與調(diào)查的男性中,有人持反對意見,名女性中,有人持反對意見.再運(yùn)用這些數(shù)據(jù)說明“性別”對判斷“人機(jī)大戰(zhàn)是人類的勝利”是否有關(guān)系時(shí),應(yīng)采用的統(tǒng)計(jì)方法是( )

A.分層抽樣B.回歸分析C.獨(dú)立性檢驗(yàn)D.頻率分布直方圖

查看答案和解析>>

同步練習(xí)冊答案