若sinθ=-
4
5
,tanθ>0,則cosθ(  )
A、-
3
5
B、
3
5
C、-
5
3
D、
5
3
分析:先根據(jù)sinθ=-
4
5
,tanθ>0確定θ所在的象限,再由cosθ=-
1-sin2θ
可求得最后答案.
解答:解:由已知,θ在第三象限,
∴cosθ=-
1-sin2θ
=-
1-(
4
5
)
2
=-
3
5
,
故選A.
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系.考查基礎(chǔ)知識(shí)的掌握程度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinα=-
4
5
,tanα<0,則cosα等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinθ=-
4
5
,tanθ>0,則cosθ
-
3
5
-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=8內(nèi)有一點(diǎn)P(-1,2),弦AB過點(diǎn)P,且傾斜角為α
(1)若 sinα=
45
,求線段AB的長;
(2)若弦AB恰被P平分,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①若sinθ=-
4
5
,tanθ>0,則cosθ=
3
5
;
②若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
③f(x)=
2011-x2
+
x2-2011
既是奇函數(shù)又是偶函數(shù);
④已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|).其中所有正確說法的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∴f(α)=
2cos(
π
2
-α)+sin(2α-π)
4cos
α
2
sin
α
2

(1)化簡f(α);
(2)若sinα=
4
5
,且α∈(0,π),求f(α)的值.

查看答案和解析>>

同步練習(xí)冊答案