設(shè)命題p:c2<c和命題q:對任意的x∈R,x2+4cx+1>0,若p∨q為真,p∧q為假,則實數(shù)c的取值范圍是
 
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:命題p:c2<c,解得0<c<1.命題q:對任意的x∈R,x2+4cx+1>0,△<0,解得c.由于p∨q為真,p∧q為假,可得p與q必然一真一假.解出即可.
解答: 解:命題p:c2<c,解得0<c<1.
命題q:對任意的x∈R,x2+4cx+1>0,∴△=16c2-4<0,解得-
1
2
<c<
1
2

∵p∨q為真,p∧q為假,
∴p與q必然一真一假.
當(dāng)p真q假時,
0<c<1
c≤-
1
2
或c≥
1
2
,解得
1
2
≤c<1
;
當(dāng)q真p假時,
c≤0或c≥1
-
1
2
<c<
1
2
,解得-
1
2
<c≤0

故答案為:
1
2
≤c<1
-
1
2
<c≤0
點評:本題考查了一元二次不等式的解法、復(fù)合命題的真假判斷方法、不等式組的解法,考查了計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a82-(a1+a3+…+a92=39,則實數(shù)m的取值為(  )
A、1或-3B、-1或3
C、1D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證券交易市場規(guī)定股票成交價格只能在前一個交易日的收盤價(即最后一筆的成交價)的漲、跌10%范圍內(nèi)變動,例如:某支股票前一個交易日的收盤價是每股100元,則今天該交易股票的買賣價格必須在90元至110元之間,假設(shè)有某支股票的價格起伏很大,某一天的收盤價是每股40元,次日起連續(xù)五個交易日以跌停板收盤(也就是每天跌10%)緊接著卻連續(xù)五個交易日以漲停板收盤(也就是每天漲10%),則經(jīng)過這十個交易日后,該支股票每股的收盤價大致是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥a
x-y≤-1
且z=x+ay的最小值為7,則a=(  )
A、-5B、3
C、-5或3D、5或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
,t),
b
=(
1
2
3
2
),且向量
c
=
a
+(tanθ-3)
b
d
=m
a
+
b
tanθ,其中m,θ均為實數(shù).
(1)若
a
b
,試求t的值;
(2)若
a
b
,試求|
a
+
b
|;
(3)當(dāng)t=-1,
c
d
時,求實數(shù)m最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a1+a8+a15=π,cos(a4+a12)的值為α,則
1
0
xα
dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α∈(-π,-
π
2
),則
1+sinα
1-sinα
-
1-sinα
1+sinα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,Sn為其前n項和,已知a6=S6=-3;正項數(shù)列{bn}滿足:bn+12-bn+1bn-2bn2=0,b2+b4=20.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=
an
bn
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式錯誤的是(  )
A、tan138°<tan143°
B、sin(-
π
18
)>sin(-
π
10
C、lg1.6>lg1.4
D、0.75-0.1<0.750.1

查看答案和解析>>

同步練習(xí)冊答案