分析 根據(jù)兩個動點的角速度和第一次相遇時,兩者走過的弧長和恰好是圓周長求出第一次相遇的時間,再由角速度和時間求出P點到達的位置,再根據(jù)三角函數(shù)的定義求出此點的坐標(biāo),利用弧長公式及l(fā)=αR求出P點走過的弧長.
解答 解:設(shè)P、Q第一次相遇時所用的時間是t,
可得t•$\frac{π}{3}$+t•|-$\frac{π}{6}$|=2π,即$\frac{π}{2}$t=2π.
∴t=4(秒),即第一次相遇的時間為4秒.設(shè)第一次相遇點為C,第一次相遇時P點已運動到終邊在$\frac{π}{3}$•4=$\frac{4π}{3}$的位置,
因此第一次相遇時,P點走過的弧長為$\frac{4}{3}$π×3=4π.
故答案為:4π.
點評 本題考查了圓周運動的問題,認(rèn)真分析題意列出方程,即第一次相遇時兩個動點走過的弧長和是圓周,這是解題的關(guān)鍵,考查了任意角的概念和弧長公式等知識,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1)與(2)的假設(shè)都錯誤 | B. | (1)與(2)的假設(shè)都正確 | ||
C. | (1)的假設(shè)錯誤;(2)的假設(shè)正確 | D. | (1)的假設(shè)正確;(2)的假設(shè)錯誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=cos(\frac{x}{2}+\frac{π}{6})$ | B. | $y=sin(2x+\frac{5π}{6})$ | C. | $y=cos(2x-\frac{π}{3})$ | D. | $y=sin(2x-\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | -2 | $\sqrt{2}$ |
y | -2$\sqrt{3}$ | 0 | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{3}$ | C. | $\frac{2\sqrt{10}}{5}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com