6.如圖,動點P,Q從點A(3,0)出發(fā)繞⊙O作圓周運動,若點M按逆時針方向每秒鐘轉(zhuǎn)$\frac{π}{3}$rad,點N按順時針方向每秒鐘轉(zhuǎn)$\frac{π}{6}$rad.則當(dāng)M、N第一次相遇時,點M轉(zhuǎn)過的弧長為4π.

分析 根據(jù)兩個動點的角速度和第一次相遇時,兩者走過的弧長和恰好是圓周長求出第一次相遇的時間,再由角速度和時間求出P點到達的位置,再根據(jù)三角函數(shù)的定義求出此點的坐標(biāo),利用弧長公式及l(fā)=αR求出P點走過的弧長.

解答 解:設(shè)P、Q第一次相遇時所用的時間是t,
可得t•$\frac{π}{3}$+t•|-$\frac{π}{6}$|=2π,即$\frac{π}{2}$t=2π.
∴t=4(秒),即第一次相遇的時間為4秒.設(shè)第一次相遇點為C,第一次相遇時P點已運動到終邊在$\frac{π}{3}$•4=$\frac{4π}{3}$的位置,

因此第一次相遇時,P點走過的弧長為$\frac{4}{3}$π×3=4π.
故答案為:4π.

點評 本題考查了圓周運動的問題,認(rèn)真分析題意列出方程,即第一次相遇時兩個動點走過的弧長和是圓周,這是解題的關(guān)鍵,考查了任意角的概念和弧長公式等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2,
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.
用反證法證明時可假設(shè)方程至少有一根的絕對值大于或等于1.以下結(jié)論正確的是( 。
A.(1)與(2)的假設(shè)都錯誤B.(1)與(2)的假設(shè)都正確
C.(1)的假設(shè)錯誤;(2)的假設(shè)正確D.(1)的假設(shè)正確;(2)的假設(shè)錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.不等式|2x-log2x|<2x+|log2x|成立,則( 。
A.1<x<2B.0<x<1C.x>1D.x>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.同時具有性質(zhì):
①最小正周期是π;
②圖象關(guān)于直線x=$\frac{π}{3}$對稱;
③在區(qū)間$[{\frac{5π}{6},π}]$上是單調(diào)遞增函數(shù)”的一個函數(shù)可以是( 。
A.$y=cos(\frac{x}{2}+\frac{π}{6})$B.$y=sin(2x+\frac{5π}{6})$C.$y=cos(2x-\frac{π}{3})$D.$y=sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C1、拋物線C2的焦點均在x軸上,且橢圓C1的中心和拋物線C2的頂點均為原點O,從橢圓C1上取兩個點.拋物線C2上取一個點.將其坐標(biāo)記錄于表中:
 x 3-2 $\sqrt{2}$
 y-2$\sqrt{3}$ 0 $\frac{\sqrt{6}}{2}$
(Ⅰ)求橢圓C1和拋物線C2的標(biāo)準(zhǔn)方程:
(Ⅱ)直線l:y=kx+m(k≠0)與橢圓C1交于不同的兩點M、N.
(i)若線段MN的垂直平分線過點G($\frac{1}{8}$,0),求實數(shù)k的取值范圍.
(ii)在滿足(i)的條件下,且有m≠=1,求△OMN的面積S△OMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知冪函數(shù)y=f(x)的圖象經(jīng)過點(3,$\sqrt{3}$),那么f(4)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=cos(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,如果x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}$),且f(x1)=f(x2),則f(x1+x2)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.經(jīng)過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F作該雙曲線一條漸近線的垂線與兩條漸近線相交于M,N兩點,若O為坐標(biāo)原點,△OMN的面積是$\frac{3}{8}$a2,則該雙曲線的離心率(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{3}$C.$\frac{2\sqrt{10}}{5}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1-2x}{x+1}$(x≥1),數(shù)列an=f(n)(n∈N*),證明:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案