已知a,b∈R,則“a>b>1”是“l(fā)ogab<1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義進行判斷即可.
解答: 解:“a>b>1”⇒“l(fā)ogab<1”,反之不成立,例如:log
1
2
2
=-1,
因此“a>b>1”是“l(fā)ogab<1”的充分不必要條件.
故選:A.
點評:本題考查了對數(shù)函數(shù)的單調性、簡易邏輯的判定,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=ax-b(a>0且a≠1)的圖象不經(jīng)過第一象限,則( 。
A、a>1且b<-1
B、a<1且b<-1
C、a<1且b≥1
D、a<1且b≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a1=3,公差為d,前n項和為Sn,當且僅當n=6時Sn取得最大值,則d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義域為R的偶函數(shù),且x≥0時,f(x)=3x-1,則f(-1)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x+3
+
1
1-x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是( 。
①“2<x<6”是“x2-4x-12<0”的必要不充分條件
②函數(shù)f(x)=tan2x的對稱中心是(
2
,0)(k∈Z)
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④設常數(shù)a使方程sinx+
3
cosx=a在閉區(qū)間[0,2π]上恰有三個解x1,x2,x3則x1+x2+x3=
3
A、①③B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合U={2,0,1,5},集合A={0,2},則∁UA=( 。
A、φ
B、{0,2}
C、{1,5}
D、{2,0,1,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(x-1,2),
b
=(2,1),且
a
b
,則x的值是(  )
A、1B、-1C、2D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足:對于任意實數(shù)x,y,都有f(x+y)=f(x)+f(y)+
1
2
恒成立,且當x>0時,f(x)>-
1
2
恒成立.
(1)求f(0)的值,并列舉滿足題設條件的一個具體函數(shù);
(2)判斷函數(shù)f(x)在R上的單調性,并加以證明.

查看答案和解析>>

同步練習冊答案