精英家教網 > 高中數學 > 題目詳情
13.設直線l為公海的分界線,一巡邏艇在A處發(fā)現了北偏東60°的海面B處有一艘走私船,走私船正向停泊在公海上接應的走私海輪C航行,以便上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,A與公海相距約為20海里,走私船可能向任一方向逃竄,請回答下列問題:
(1)如果走私船和巡邏艇都是沿直線航行,那么走私船能被截獲的點是哪些?
(2)根據截獲點的軌跡,探討“可截獲區(qū)域”和“非截獲區(qū)域”.

分析 以A為原點,以正東方向為x軸,以海里為單位建立直角坐標系,設|AB|=2t(t>0);
(1)設截獲點為P(x,y),利用|PA|=2|PB|得出截獲點的軌跡是圓;
(2)設點Q(x,y)在截獲點所在的圓內部,列出不等式求出可截獲區(qū)域和非截獲區(qū)域.

解答 解:以A為原點,以正東方向為x軸,并以海里為單位建立直角坐標系,
如圖所示;
設|AB|=2t,(t>0),則$B=(\sqrt{3}t,t)$;
(1)設截獲點為P(x,y),則|PA|=2|PB|,
即$\sqrt{{x^2}+{y^2}}=2\sqrt{(x-\sqrt{3t{)^2}}+{{(y-t)}^2}}$,
化簡得${(x-\frac{{4\sqrt{3}}}{3}t)^2}+{(y-\frac{4}{3}t)^2}={(\frac{4}{3}t)^2}$;
所以,截獲點的軌跡是以$D(\frac{{4\sqrt{3}}}{3}t,\frac{4}{3}t)$為圓心,$\frac{4}{3}t$為半徑的圓;
(2)設點Q(x,y)在圓D內部,則
${(x-\frac{{4\sqrt{3}}}{3}t)^2}+{(y-\frac{4}{3}t)^2}<{(\frac{4}{3}t)^2}$,
化簡得$\sqrt{{x^2}+y{\;}^2}>2\sqrt{(x-\sqrt{3t{)^2}}+{{(y-t)}^2}}$,
即|QA|>2|QB|;
所以,可截獲區(qū)域為領海上的圓D外部,
非截獲區(qū)域為領海上的圓D內部.

點評 本題考查了圓的方程與方向向量的應用問題,也考查了數學建模的應用問題,是綜合性題目

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

3.已知中心在原點,焦點在x軸上的橢圓C的離心率為$\frac{1}{2}$,其一個頂點為拋物線x2=-4$\sqrt{3}$y的焦點.
(1)求橢圓C的標準方程;
(2)若過點P(2,1)的直線l與橢圓C在第一象限相切于點M,求直線l的方程和點M的坐標;
(3)是否存在過點P(2,1)的直線l1與橢圓C相交于不同的兩點A,B,且滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=${\overrightarrow{PM}^2}$?若存在,求出直線l1的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.壇子里放著5個相同大小,相同形狀的咸鴨蛋,其中有3個是綠皮的,2個是白皮的.如果不放回地依次拿出2個鴨蛋,求:
(1)第一次拿出綠皮鴨蛋的概率;
(2)第1次和第2次都拿到綠皮鴨蛋的概率;
(3)在第1次拿出綠皮鴨蛋的條件下,第2次拿出綠皮鴨蛋的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=$\frac{1}{2}$x2-5x+4lnx.
(1)求函數f(x)的定義域并求函數f(x)的單調區(qū)間;
(2)求函數f(x)的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知函數f(x)=lnx-ax-3(a≠0)
(1)求函數f(x)的極值;
(2)若對于任意的a∈[1,2],若函數g(x)=x3+$\frac{{x}^{2}}{2}$[m-2f′(x)]在區(qū)間(a,3)上有最值,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.在如圖的幾何體中,四邊形CDEF為正方形,四邊形ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(1)求證:AC⊥平面FBC;
(2)求平面CBF與平面ADE所成夾角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)如果橢圓M的離心率e=$\frac{\sqrt{3}}{2}$,經過點P(2,1).
①求橢圓M的方程;
②經過點P的兩直線與橢圓M分別相交于A,B,它們的斜率分別為k1,k2.如果k1+k2=0,試問:直線AB的斜率是否為定值?并證明.
(2)如果橢圓M的a=2,b=1,點B,C分別為橢圓M的上、下頂點,過點T(t,2)(t≠0)的直線TB,TC分別與橢圓M交于E,F兩點.若△TBC的面積是△TEF的面積的k倍,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.函數f(x)=$\frac{a+lnx}{x}$,若曲線f(x)在點(e,f(e))處的切線與直線e2x-y+e=0垂直(其中e為自然對數的底數).
(1)求f(x)的單調區(qū)間和極值.
(2)求證:當x>1時,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知函數f(x)=ax,g(x)=logax(a>0,a≠1),若$f({\frac{1}{2}})•g({\frac{1}{2}})<0$,那么f(x)與g(x)在同一坐標系內的圖象可能是下圖中的(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案