4.i是虛數(shù)單位,(i+1)(i+2)=(  )
A.1+3iB.1-3iC.-1+3iD.-1-3i

分析 利用復數(shù)的運算法則即可得出.

解答 解:(i+1)(i+2)=-1+2+3i=1+3i,
故選:A.

點評 本題考查了復數(shù)的運算法則,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.如果存在常數(shù)A,對于數(shù)列{an}中任意一項ai(i∈N*),A-ai也是數(shù)列{an}中的一項,稱數(shù)列{an}具有D性質,常數(shù)A是它的D性系數(shù).
(I)若數(shù)列:2,3,6,m(m>6)具有D性質,且它的D性系數(shù)為A,求m和A的值.
(II)已知等差數(shù)列{bn}共有101項,所有項之和是S,求證:數(shù)列{bn}具有D性質,并用S表示它的D性系數(shù).
(III)對于一個不少于3項,且各項均為正整數(shù)的等比數(shù)列{cn},能否同時滿足:①對于任意的正整數(shù)i,j,當i<j有,有ci<cj;②具有D性質.請給出你的結論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設函數(shù)$f(x)=\left\{\begin{array}{l}|x|,x≤\frac{m}{2}\\{x^2}-2mx+4m,x>\frac{m}{2}\end{array}\right.({m∈R})$,若存在實數(shù)t,使得函數(shù)y=f(x)-t有4個不同的零點,則m的取值范圍為($\frac{7}{2},\frac{16}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調遞增,則滿足f(2x-1)<f(2)的x的取值范圍是( 。
A.$({-\frac{1}{2},\frac{2}{3}})$B.$({-\frac{1}{2},\frac{3}{2}})$C.$({-\frac{1}{2},\frac{1}{3}})$D.$({\frac{1}{2},2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知集合M滿足{1,2}⊆M⊆{1,2,3,4,5},則集合M的個數(shù)為8個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知sinα=$\frac{3}{5}$,cosα=$\frac{4}{5}$,則sin2α=( 。
A.$\frac{7}{5}$B.$\frac{12}{5}$C.$\frac{12}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=$\sqrt{3}$,向量$\overrightarrow{AB}$與$\overrightarrow{CA}$的夾角為$\frac{π}{3}$,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=( 。
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.6D.-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.命題:“對任意x∈R,ex-x2+ln(x2+2)>0”的否定是( 。
A.任意x∈R,ex-x2+ln(x2+2)≤0B.存在x∈R,ex-x2+ln(x2+2)>0
C.不存在ex-x2+ln(x2+2)≤0D.存在x∈R,ex-x2+ln(x2+2)≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=ex-1,g(x)=ln(x+1),直線l與y=f(x)的圖象相切,與y=g(x)的圖象也相切,則直線的l方程是y=x.

查看答案和解析>>

同步練習冊答案