【題目】已知A,B,C為銳角△ABC的內(nèi)角, =(sinA,sinBsinC), =(1,﹣2),
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.

【答案】
(1)解:依題意有sinA=2sinBsinC.

在△ABC中,A=π﹣B﹣C,

所以sinA=sin(B+C)=sinBcosC+cosBsinC,

所以2sinBsinC=sinBcosC+cosBsinC.

因?yàn)椤鰽BC為銳角三角形,所以cosB>0,cosC>0,

所以tanB+tanC=2tanBtanC,

所以tanB,tanBtanC,tanC成等差數(shù)列


(2)解:在銳角△ABC中,

tanA=tan(π﹣B﹣C)=﹣tan(B+C)=﹣

即tanAtanBtanC=tanA+tanB+tanC,

由(1)知tanB+tanC=2tanBtanC,

于是tanAtanBtanC=tanA+2tanBtanC≥

整理得tanAtanBtanC≥8,

當(dāng)且僅當(dāng)tanA=4時(shí)取等號,

故tanAtanBtanC的最小值為8


【解析】(1)依題意有sinA=2sinBsinC,從而2sinBsinC=sinBcosC+cosBsinC,再由cosB>0,cosC>0,能推導(dǎo)出tanB,tanBtanC,tanC成等差數(shù)列.(2)推導(dǎo)出tanAtanBtanC=tanA+tanB+tanC,從而tanAtanBtanC≥8,由此能求出tanAtanBtanC的最小值為8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一元二次不等式﹣x2+x+2>0的解集是(
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場調(diào)查和預(yù)測,投資債券等穩(wěn)鍵型產(chǎn)品A的收益與投資成正比,其關(guān)系如圖1所示;投資股票等風(fēng)險(xiǎn)型產(chǎn)品B的收益與投資的算術(shù)平方根成正比,其關(guān)系如圖2所示(收益與投資單位:萬元).
(1)分別將A、B兩種產(chǎn)品的收益表示為投資的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有10萬元資金,并全部投資債券等穩(wěn)鍵型產(chǎn)品A及股票等風(fēng)險(xiǎn)型產(chǎn)品B兩種產(chǎn)品,問:怎樣分配這10萬元投資,才能使投資獲得最大收益,其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=ax2﹣(2a+1)x+a+1對于a∈[﹣1,1]時(shí)恒有f(x)<0,則實(shí)數(shù)x的取值范圍是(
A.(1,2)
B.(﹣∞,1)∪(2,+∞)
C.(0,1)
D.(﹣∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1= Sn(n=1,2,3,…).
(1)證明:數(shù)列{ }是等比數(shù)列;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n2﹣4n﹣5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|an|,數(shù)列{bn}的前n項(xiàng)和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)公差大于0的等差數(shù)列的前項(xiàng)和為.已知,且成等比數(shù)列,記數(shù)列的前項(xiàng)和為.

(1)求

(2)若對于任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇,與此同時(shí),相關(guān)管理部門推出了針對電商商品和服務(wù)的評價(jià)體系.現(xiàn)從評價(jià)系統(tǒng)中選出200次成功交易,并對其評價(jià)進(jìn)行統(tǒng)計(jì),對商品好評率為,對服務(wù)好評率為,其中對商品和服務(wù)都做出好評的交易為80次.

1)是否可以在犯錯(cuò)誤率不超過0.1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?

2)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評的概率.

注:1.

2.

查看答案和解析>>

同步練習(xí)冊答案