【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),證明:.

【答案】(1) 當(dāng)時(shí), 上單調(diào)遞增;

上單調(diào)遞減;時(shí), 上單調(diào)遞增;當(dāng)時(shí),上單調(diào)遞減; 在上單調(diào)遞增.

(2)見解析.

【解析】分析:(1),分別討論當(dāng)時(shí),討論導(dǎo)函數(shù)的正負(fù)從而可得函數(shù)的單調(diào)性;

(2)由(1)知,且為方程的兩個(gè)根,由根與系數(shù)的關(guān)系,其中,可化簡,令,進(jìn)而求導(dǎo)求最值即可證得.

詳解:(1) .

,,對(duì)稱軸為.

①當(dāng)時(shí),,所以上單調(diào)遞增.

②當(dāng)時(shí), .此時(shí),方程兩根分別為,.

當(dāng)時(shí),,當(dāng)時(shí),,當(dāng),,所以上單調(diào)遞增, 在上單調(diào)遞減.

當(dāng)時(shí),,當(dāng)時(shí),,當(dāng),, 所以上單調(diào)遞減, 在上單調(diào)遞增.

綜上,當(dāng)時(shí), 上單調(diào)遞增;

上單調(diào)遞減;時(shí), 上單調(diào)遞增;當(dāng)時(shí),上單調(diào)遞減; 在上單調(diào)遞增.

(2)由(1)知,且為方程的兩個(gè)根.

由根與系數(shù)的關(guān)系,其中.

于是

.

,

所以在上單調(diào)遞減,且.

,即,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示

(1)求函數(shù)的解析式;

(2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍和這兩個(gè)根的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數(shù)的兩個(gè)零點(diǎn)為,記,證明:

【答案】(Ⅰ)極大值為無極小值;證明見解析.

【解析】分析:(Ⅰ)先判斷函數(shù)上的單調(diào)性,然后可得當(dāng)時(shí),有極大值,無極小值.不妨設(shè),由題意可得,又由條件得,構(gòu)造,令,則,利用導(dǎo)數(shù)可得故得,所以

詳解:(Ⅰ),

,

且當(dāng)時(shí),,即上單調(diào)遞增,

當(dāng)時(shí),,即上單調(diào)遞減,

∴當(dāng)時(shí),有極大值,且無極小值.

(Ⅱ)函數(shù)的兩個(gè)零點(diǎn)為,不妨設(shè)

,

,

,

,

,則

,

上單調(diào)遞減,

,

,

點(diǎn)睛:(1)研究方程根的情況可以通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最大(。┲、函數(shù)的變化趨勢(shì)等根據(jù)題目要求,畫出函數(shù)圖象的大體圖象然后通過數(shù)形結(jié)合的思想去分析問題,可以使得問題的求解有一個(gè)清晰、直觀的整體展現(xiàn)

(2)證明不等式時(shí)常采取構(gòu)造函數(shù)的方法,然后通過判斷函數(shù)的單調(diào)性借助函數(shù)的最值進(jìn)行證明

型】解答
結(jié)束】
22

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),.以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為:

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

Ⅱ)設(shè)直線與曲線交于不同的兩點(diǎn),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,(其中, 為自然對(duì)數(shù)的底數(shù), …….

1)令,若對(duì)任意的恒成立,求實(shí)數(shù)的值;

2)在(1)的條件下,設(shè)為整數(shù),且對(duì)于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】算籌是在珠算發(fā)明以前我國獨(dú)創(chuàng)并且有效的計(jì)算工具,為我國古代數(shù)學(xué)的發(fā)展做出了很大貢獻(xiàn).在算籌計(jì)數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:

表示多位數(shù)時(shí),個(gè)位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:

如果把5根算籌以適當(dāng)?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個(gè)數(shù)為( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐底面為直角,,分別為的中點(diǎn).

(1)試證:平面;

(2)求與平面所成角的大小;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在學(xué)年期末舉行“我最喜歡的文化課”評(píng)選活動(dòng),投票規(guī)則是一人一票,高一(1)班44名學(xué)生和高一(7)班45名學(xué)生的投票結(jié)果如下表(無廢票):

語文

數(shù)學(xué)

外語

物理

化學(xué)

生物

政治

歷史

地理

高一(1)班

6

9

7

5

4

5

3

3

2

高一(7)班

6

4

5

6

5

2

3

該校把上表的數(shù)據(jù)作為樣本,把兩個(gè)班同一學(xué)科的得票之和定義為該年級(jí)該學(xué)科的“好感指數(shù)”.

(Ⅰ)如果數(shù)學(xué)學(xué)科的“好感指數(shù)”比高一年級(jí)其他文化課都高,求的所有取值;

(Ⅱ)從高一(1)班投票給政治、歷史、地理的學(xué)生中任意選取位同學(xué),設(shè)隨機(jī)變量為投票給地理學(xué)科的人數(shù),求的分布列和期望;

(Ⅲ)當(dāng)為何值時(shí),高一年級(jí)的語文、數(shù)學(xué)、外語三科的“好感指數(shù)”的方差最小?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考最大的特點(diǎn)就是取消文理分科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這科中自由選擇三門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對(duì)全文(選擇政治、歷史、地理)的選擇是否與性別有關(guān),從某學(xué)校高一年級(jí)的1000名學(xué)生中隨機(jī)抽取男生,女生各人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全文的人數(shù)比不選全文的人數(shù)少人.

(1)估計(jì)在男生中,選擇全文的概率.

(2)請(qǐng)完成下面的列聯(lián)表;并估計(jì)有多大把握認(rèn)為選擇全文與性別有關(guān),并說明理由;

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的所有棱長均為2, , 分別為的中點(diǎn).

(1)證明: 平面

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案