已知集合,且,,則的取值范圍是_______.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥底面ABCD,AD=PD=2,E、F分別為CD、PB的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:平面AEF⊥平面PAB;
(3)設(shè)$AB=\sqrt{2}AD$,求直線AC與平面AEF所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.根據(jù)最新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》指出空氣質(zhì)量指數(shù)在0~50,各類人群可正常活動(dòng).某市環(huán)保局在2014年對(duì)該市進(jìn)行了為期一年的空氣質(zhì)量檢測(cè),得到每天的空氣質(zhì)量指數(shù),從中隨機(jī)抽取50個(gè)作為樣本進(jìn)行分析報(bào)告,樣本數(shù)據(jù)分組區(qū)間為[0,10),[10,20),[20,30),[30,40),[40,50],由此得到樣本的空氣質(zhì)量指數(shù)頻率分布直方圖,如圖.
(Ⅰ)求a的值;并根據(jù)樣本數(shù)據(jù),試估計(jì)這一年度的空氣
質(zhì)量指數(shù)的平均值;
(Ⅱ)用這50個(gè)樣本數(shù)據(jù)來(lái)估計(jì)全年的總體數(shù)據(jù),將頻率視為概率.如果空氣質(zhì)量指數(shù)不超過(guò)20,就認(rèn)定空氣質(zhì)量為“最優(yōu)等級(jí)”.從這一年的監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取2天的數(shù)值,其中達(dá)到“最優(yōu)等級(jí)”的天數(shù)為ξ,求ξ的分布列,并估計(jì)一個(gè)月(30天)中空氣質(zhì)量能達(dá)到“最優(yōu)等級(jí)”的天數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:填空題

已知是定義在上的奇函數(shù)且,當(dāng),且時(shí),有,若對(duì)所有、恒成立,則實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,四棱錐P-ABCD中,ABCD是邊長(zhǎng)為2的菱形,且∠BAD=60°,PA⊥PC,
PB=PD,二面角P-BD-A為60°,則|PC|=( 。
A.3$\sqrt{2}$B.3$\sqrt{3}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在平面直角坐標(biāo)系xOy中,定義M(x1,y1),N(x2,y2)兩點(diǎn)之間的“直角距離”為|MN|=|x1-x2|+|y1-y2|.對(duì)于以下結(jié)論,其中正確的序號(hào)是( 。
①O為坐標(biāo)原點(diǎn),滿足條件|OP|=1的點(diǎn)P的軌跡圍成的圖形的面積為2;
②設(shè)A(l,1),B為直線2x-y+3=0上任意一點(diǎn),則|AB|的最小值為2;
③O為坐標(biāo)原點(diǎn),M為曲線x${\;}^{\frac{1}{2}}$+y${\;}^{\frac{1}{2}}$=2上任意一點(diǎn),則|OM|恒等于2.
A.B.①②C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)p,q為實(shí)數(shù),$\overrightarrow{a},\overrightarrow$是兩個(gè)不共線向量,$\overrightarrow{AB}$=2$\overrightarrow{a}+p\overrightarrow$,$\overrightarrow{BC}=\overrightarrow{a}+\overrightarrow$,$\overrightarrow{CD}=(q-1)\overrightarrow{a}-2\overrightarrow$,若A,B,D三點(diǎn)共線,則pq的值是( 。
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=lnx2-2的零點(diǎn)是(  )
A.eB.$\sqrt{e}$C.-eD.e或-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn)P(1,$\frac{3}{2}$)與橢圓右焦點(diǎn)的連線垂直于x軸,直線l:y=kx+m與橢圓C相交于A、B兩點(diǎn)(均不在坐標(biāo)軸上).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),若△AOB的面積為$\sqrt{3}$,試判斷直線OA與OB的斜率之積是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案