x>0,y>0,且
2
x
+
1
y
=4
,若x+2y≥m2-2m-6恒成立,則m范圍是
-2≤m≤4
-2≤m≤4
分析:先把x+2y轉(zhuǎn)會為(x+2y)(
2
x
+
1
y
)×
1
4
展開后利用基本不等式求得其最小值,然后根據(jù)x+2y≥m2-2m-6求得m2-2m-6≤2,進而求得m的范圍.
解答:解:∵∴x+2y=(x+2y)(
2
x
+
1
y
)×
1
4
=
1
4
(4+4×
y
x
+
x
y
)≥
1
4
(4+2×2)=2,
當且僅當4×
y
x
=
x
y
時取等號,
∵x+2y≥m2-2m-6恒成立,
∴m2-2m-6≤2,求得-2≤m≤4,
故答案為:-2≤m≤4.
點評:本題主要考查了基本不等式在最值問題中的應用、函數(shù)恒成立問題.考查了學生分析問題和解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,則實數(shù)m的取值范圍( 。
A、m≥4或m≤-2
B、m≥2或m≤-4
C、-4<m<2
D、-2<m<4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x>0,y>0,且2x+y=2,則
1
x
+
1
y
的最小值是( 。
A、2
B、
3
2
C、
2
D、
3
2
+
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x>0,y>0,且2x+8y-xy=0,求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河北省保北十二縣市高一(下)期中數(shù)學試卷(解析版) 題型:解答題

(1)已知x>0,y>0,且+=2,求x+y的最小值.
(2)已知x,y∈R+,且滿足=1,求xy的最大值.
(3)若對任意x<1,恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年江西省安福中學高一下學期期中考試數(shù)學 題型:單選題

已知x>0,y>0,且2x、a、b、3y成等差數(shù)列,3x、c、d、2y成等比數(shù)列,則的最小值為(    )

A.2B.2 C.4D.4

查看答案和解析>>

同步練習冊答案