(本小題8分)自主招生是高校在高考前爭(zhēng)搶優(yōu)等生的一項(xiàng)重要舉措,不少同學(xué)也把自主招生當(dāng)作高考前的一次鍛煉.據(jù)參加自主招生的某同學(xué)說(shuō),某高校2012自主招生選拔考試分為初試和面試兩個(gè)階段,參加面試的考生按照抽簽方式?jīng)Q定出場(chǎng)順序.通過(guò)初試,選拔出甲、乙等五名考生參加面試.
(1)求面試中甲、乙兩名考生恰好排在前兩位的概率;
(2)若面試中甲和乙之間間隔的考生數(shù)記為,求的分布列和數(shù)學(xué)期望.

解:(1)設(shè)“甲、乙兩考生恰好排在前兩位”為事件,則.……3分
(2)隨機(jī)變量的可能取值為0,1,2,3
,,
,
隨機(jī)變量的分布列為:                                                 ……7分

0
1
2
3





所以.                               ……8分
本試題主要是考查了古典概型概率的計(jì)算,以及隨機(jī)變量分布列和期望值的求解的綜合運(yùn)用。
(1)首先確定甲、乙兩考生恰好排在前兩位,的事件所包含的基本事件數(shù),然后借助于古典概型概率公式計(jì)算得到。
(2)先確定隨即變量的取值情況,然后求解各個(gè)取值的概率值,然后得到分布列和期望值。
解:(1)設(shè)“甲、乙兩考生恰好排在前兩位”為事件,則.……3分
(2)隨機(jī)變量的可能取值為0,1,2,3
,,
,,
隨機(jī)變量的分布列為:                                                 ……7分

0
1
2
3





所以.                               ……8分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)在1,2,3…,9,這9個(gè)自然數(shù)中,任取3個(gè)數(shù).
(Ⅰ)求這3個(gè)數(shù)中,恰有一個(gè)是偶數(shù)的概率;
(Ⅱ)記X為這三個(gè)數(shù)中兩數(shù)相鄰的組數(shù),(例如:若取出的數(shù)1、2、3,則有兩組相鄰的數(shù)1、2和2、3,此時(shí)X的值是2)。求隨機(jī)變量X的分布列及其數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某地高三“調(diào)考”數(shù)學(xué)第1卷中共有8道選擇題,每道選擇題有4個(gè)選項(xiàng),其中只有一個(gè)是正確的;評(píng)分標(biāo)準(zhǔn)規(guī)定:“每題只選一項(xiàng),答對(duì)得5分,不答或答錯(cuò)行0分.”某考生每道題都給出一個(gè)答案.已確定5道題的答案是正確的,而其余選擇題中有1道題可判斷出兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道要可以判斷出一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道因不了解題意只能亂猜,試求出該考生:
(1)得40分的概率; (2)得多少分的可能性最大? (3)所得分?jǐn)?shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲乙兩隊(duì)參加奧運(yùn)知識(shí)競(jìng)賽,每隊(duì)三人,每人回答一個(gè)問(wèn)題,答對(duì)者為本隊(duì)贏得一分,答錯(cuò)得零分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中三人答對(duì)的概率分別為,且各人回答得正確與否相互之間沒(méi)有影響.
(1)若用表示甲隊(duì)的總得分,求隨機(jī)變量分布列和數(shù)學(xué)期望;
(2)用表示事件“甲、乙兩隊(duì)總得分之和為”,用表示事件“甲隊(duì)總得分大于乙隊(duì)總得分”,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某燈泡廠生產(chǎn)大批燈泡,其次品率為1.5%,從中任意地陸續(xù)取出100個(gè),則其中正品數(shù)X的均值為    個(gè),方差為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某大學(xué)自主招生面試時(shí)將20名學(xué)生平均分成甲,乙兩組,其中甲組有4名女學(xué)生,乙組有6名女學(xué)生.現(xiàn)采用分層抽樣(層內(nèi)采用不放回簡(jiǎn)單隨即抽樣)從甲、乙兩組中共抽取4名學(xué)生進(jìn)行第一輪面試.
(Ⅰ)求從甲、乙兩組各抽取的人數(shù);
(Ⅱ)求從甲組抽取的學(xué)生中恰有1名女學(xué)生的概率;
(Ⅲ)求抽取的4名學(xué)生中恰有2名男學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
某醫(yī)院有7名醫(yī)生(4男3女), 從7名醫(yī)生中選3人組成醫(yī)療小組下鄉(xiāng)巡診.
(1)設(shè)所選3人中女醫(yī)生的人數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)現(xiàn)已知4名男醫(yī)生中張強(qiáng)已被選中,求3名女醫(yī)生中李莉也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)張師傅駕車(chē)從公司開(kāi)往火車(chē)站,途徑4個(gè)交通崗,這4個(gè)交通崗將公司到火車(chē)站分成5個(gè)時(shí)段,每個(gè)時(shí)段的駕車(chē)時(shí)間都是3分鐘,如果遇到紅燈要停留1分鐘。假設(shè)他在各交通崗遇到紅燈是相互獨(dú)立的,并且概率都是
(1)求張師傅此行程時(shí)間不小于16分鐘的概率;
(2)記張師傅此行程所需時(shí)間為Y分鐘,求Y的分布列和均值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是隨機(jī)變量,且,則等于 (    )
A. 0.4B. 4C. 40D. 400

查看答案和解析>>

同步練習(xí)冊(cè)答案