【題目】橢圓的左、右焦點(diǎn)分別為,為橢圓上一動點(diǎn)(異于左、右頂點(diǎn)),若的周長為,且面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)是橢圓上兩動點(diǎn),線段的中點(diǎn)為,的斜率分別為 為坐標(biāo)原點(diǎn),且,求的取值范圍.
【答案】(1);(2).
【解析】
(1)通過2a+2c=且,計(jì)算即得結(jié)論;
(2)當(dāng)直線AB的斜率k=0時(shí),|OP|,
當(dāng)直線AB的斜率k≠0時(shí),可令AB的方程為:x=my+t,由可得(m2+4)y2+2mty+t2﹣4=0,求得p(,).由,2t2=m2+4,代入|OP|2的運(yùn)算中,化簡得|OP|2∈(,2]即可.
(1)由題知,的周長為2a+2c=且,
∴,c=
∴橢圓C的方程為:;
(2)當(dāng)直線AB的斜率k=0時(shí),
此時(shí)k1,k2(O為坐標(biāo)原點(diǎn)),滿足,k1=-k2=﹣.
可令OB的方程為:y,(xB>0)
由可得B(,),
此時(shí)|OP|,
當(dāng)直線AB的斜率k≠0時(shí),可令AB的方程為:x=my+t,
由可得(m2+4)y2+2mty+t2﹣4=0,
△=4m2t2﹣4(m2+4)(t2﹣4)>0m2﹣t2+4>0…①
,
x1+x2=m(y1+y2)+2t.
∴p(,).
∵,∵4y1y2+x1x2=0.
(4+m2)y1y2+mt(y1+y2)+t2=0.
t2﹣4t2=0.
2t2=m2+4,且t2≥2,…②
由①②可得t2≥2恒成立,
|OP|2∈(,2]
|OP|.
綜上,|OP|的取值范圍為[,].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近日,某地普降暴雨,當(dāng)?shù)匾淮笮吞釅伟l(fā)生了滲水現(xiàn)象,當(dāng)發(fā)現(xiàn)時(shí)已有的壩面滲水,經(jīng)測算,壩而每平方米發(fā)生滲水現(xiàn)象的直接經(jīng)濟(jì)損失約為元,且滲水面積以每天的速度擴(kuò)散.當(dāng)?shù)赜嘘P(guān)部門在發(fā)現(xiàn)的同時(shí)立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補(bǔ)貼費(fèi)為每人元,勞務(wù)費(fèi)及耗材費(fèi)為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.
寫出關(guān)于的函數(shù)關(guān)系式;
應(yīng)安排多少名人員參與搶修,才能使總損失最。ǹ倱p失=因滲水造成的直接損失+部門的各項(xiàng)支出費(fèi)用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),則下列結(jié)論錯(cuò)誤的是( )
A. 是偶函數(shù) B. 的值域是
C. 方程的解只有 D. 方程的解只有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點(diǎn).求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐O—ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A—BE—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過去大多數(shù)人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財(cái)工具也多了起來,為了研究某種理財(cái)工具的使用情況,現(xiàn)對年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成5組:,,,,,并整理得到頻率分布直方圖:
(1)求圖中的a值;
(2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個(gè)組中,各抽取多少人;
(3)由頻率分布直方圖,求所有被調(diào)查人員的平均年齡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題甲:“一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角相等或互補(bǔ).”命題乙:“底面為正三角形,側(cè)面為等腰三角形的三棱錐是正三棱錐.”命題丙:“過圓錐的兩條母線的截面,以軸截面的面積最大.”其中真命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左右焦點(diǎn)分別為,為橢圓上位于軸同側(cè)的兩點(diǎn),的周長為,的最大值為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)x,y滿足設(shè),則z的取值范圍是______.(表示a,b兩數(shù)中的較大數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com