已知函數(shù)是奇函數(shù)(a>0, 且a≠1)。
(1)求m的值;
(2)判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性并加以證明;
(3)當(dāng)a>1,x∈(r,a-2)時(shí),f(x)的值域是(1,+∞),求a與r的值。

解:(1)由是奇函數(shù),得f(-x)=-f(x),
即loga+loga=0,
∴l(xiāng)oga=0,解得:m=-1(m=1舍去)。
(2)由(1)得,(a>0,a≠1),
任取x1,x2∈(1,+∞),且x1<x2,
令t(x)=, 則
∵x1>1,x2>1,x1<x2,
∴x1-1>0,x2-1>0,x2-x1>0,
∴t(x1)>t(x2),
∴當(dāng)a>1時(shí),,f(x)在(1,+∞)上是減函數(shù);
當(dāng)0<a<1時(shí),f(x)在(1,+∞)上是增函數(shù)。
(3)當(dāng)a>1時(shí),要使f(x)的值域是(1,+∞),則>1,即>a,
從而,
>1,即>0,解得:x>1,
∴1<x<,
,∴r=1,a=2+。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式是奇函數(shù)(a∈R).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)試判斷函數(shù)f(x)在(-∞,+∞)上的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若對任意的t∈R,不等式f(t2-(m-2)t)+f(t2-m-1)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省唐山一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)是奇函數(shù)(a>0且a≠1)
(1)求m的值;
(2)判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省淮安市清江中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)是奇函數(shù)(a∈R).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)試判斷函數(shù)f(x)在(-∞,+∞)上的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若對任意的t∈R,不等式f(t2-(m-2)t)+f(t2-m-1)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市黃浦區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知函數(shù)是奇函數(shù),定義域?yàn)閰^(qū)間D(使表達(dá)式有意義的實(shí)數(shù)x 的集合).
(1)求實(shí)數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)a滿足0<a<1,試判斷函數(shù)y=f(x)在定義域D內(nèi)的單調(diào)性,并說明理由;
(3)當(dāng)x∈A=[a,b)(A⊆D,a是底數(shù))時(shí),函數(shù)值組成的集合為[1,+∞),求實(shí)數(shù)a、b的值.

查看答案和解析>>

同步練習(xí)冊答案