【題目】已知函數(shù),且處的切線與平行.

的單調(diào)區(qū)間;

若存在區(qū)間,使上的值域是,求b的取值范圍.

【答案】(1)見解析.

【解析】

對(duì)函數(shù)求導(dǎo),由求出a的值,然后將a的值代入導(dǎo)數(shù),求出極值點(diǎn),討論導(dǎo)數(shù)的正負(fù),即可求出函數(shù)的單調(diào)區(qū)間;由函數(shù)在區(qū)間上單調(diào)遞增得到,將問題轉(zhuǎn)化為關(guān)于x的方程在區(qū)間上有兩個(gè)解,利用參變量分離法得出在區(qū)間上有兩個(gè)解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出函數(shù)在區(qū)間上的圖象,即可求出b的取值范圍.

,得

,得

,得,由,得

的單調(diào)減區(qū)間為,增區(qū)間為;

知,,且函數(shù)在區(qū)間上單調(diào)遞增,若存在區(qū)間,使上的值域是

則有,則,得,

所以,關(guān)于x的方程在區(qū)間上有兩解,

,得,構(gòu)造函數(shù),其中,

所以,直線與函數(shù)的圖象在區(qū)間上有兩個(gè)交點(diǎn),

,

構(gòu)造函數(shù),則,

所以,函數(shù)在區(qū)間上單調(diào)遞增,由于,

當(dāng)時(shí),,即;當(dāng)時(shí),,即

所以,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以,函數(shù)處取得最小值,即,

由于,,所以,,

結(jié)合圖象可知,當(dāng)時(shí),直線與函數(shù)在區(qū)間上的圖象有兩個(gè)交點(diǎn),

因此,實(shí)數(shù)b的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=,設(shè)bn=,n∈N*。

(1)證明{bn}是等比數(shù)列(指出首項(xiàng)和公比);

(2)求數(shù)列{log2bn}的前n項(xiàng)和Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:

  

2013

2014

2015

2016

2017

時(shí)間代號(hào)t

1

2

3

4

5

儲(chǔ)蓄存款y/千億元

5

6

7

8

10

(1)y關(guān)于t的線性回歸方程t+;

(2)用所求回歸方程預(yù)測(cè)該地區(qū)2018(t=6)的人民幣儲(chǔ)蓄存款.

:回歸方程t+,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列問題中,最適合用簡單隨機(jī)抽樣方法抽樣的是(

A.某縣從該縣中、小學(xué)生中抽取200人調(diào)查他們的視力情況

B.15種疫苗中抽取5種檢測(cè)是否合格

C.某大學(xué)共有學(xué)生5600人,其中?粕1300人、本科生3000人、研究生1300人,現(xiàn)抽取樣本量為280的樣本調(diào)查學(xué)生利用因特網(wǎng)查找學(xué)習(xí)資料的情況,

D.某學(xué)校興趣小組為了了解移動(dòng)支付在大眾中的熟知度,要對(duì)歲的人群進(jìn)行隨機(jī)抽樣調(diào)查

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,為全等的正三角形,且平面平面,平面平面.

證明:;

求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水葫蘆原產(chǎn)于巴西,年作為觀賞植物引入中國. 現(xiàn)在南方一些水域水葫蘆已泛濫成災(zāi)嚴(yán)重影響航道安全和水生動(dòng)物生長. 某科研團(tuán)隊(duì)在某水域放入一定量水葫蘆進(jìn)行研究,發(fā)現(xiàn)其蔓延速度越來越快,經(jīng)過個(gè)月其覆蓋面積為,經(jīng)過個(gè)月其覆蓋面積為. 現(xiàn)水葫蘆覆蓋面積(單位)與經(jīng)過時(shí)間個(gè)月的關(guān)系有兩個(gè)函數(shù)模型可供選擇.

(參考數(shù)據(jù):

Ⅰ)試判斷哪個(gè)函數(shù)模型更合適,并求出該模型的解析式;

Ⅱ)求原先投放的水葫蘆的面積并求約經(jīng)過幾個(gè)月該水域中水葫蘆面積是當(dāng)初投放的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】()某電視臺(tái)舉辦的闖關(guān)節(jié)目共有五關(guān),只有通過五關(guān)才能獲得獎(jiǎng)金,規(guī)定前三關(guān)若有失敗即結(jié)束,后兩關(guān)若有失敗再給一次從失敗的關(guān)開始繼續(xù)向前闖的機(jī)會(huì)(后兩關(guān)總共只有一次機(jī)會(huì)),已知某人前三關(guān)每關(guān)通過的概率都是,后兩關(guān)每關(guān)通過的概率都是.

(1)求該人獲得獎(jiǎng)金的概率;

(2)設(shè)該人通過的關(guān)數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C

若圓C的切線lx軸和y軸上的截距相等,且截距不為零,求切線l的方程;

已知點(diǎn)為直線上一點(diǎn),由點(diǎn)P向圓C引一條切線,切點(diǎn)為M,若,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,、是以為直徑的圓上兩點(diǎn),,上一點(diǎn),且,將圓沿直徑折起,使點(diǎn)在平面的射影上,已知.

1)求證:平面;

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案