直線l與橢圓
x2
2
+y2=1
交于不同的兩點(diǎn)P1、P2,線段P1P2的中點(diǎn)為P,設(shè)直線l的斜率為k1(k1≠0),直線OP的斜率為k2(O點(diǎn)為坐標(biāo)原點(diǎn)),則k1•k2的值為( 。
分析:設(shè)點(diǎn),代入橢圓方程,利用點(diǎn)差法,結(jié)合線段P1P2的中點(diǎn)為P,即可得到結(jié)論.
解答:解:設(shè)P1(x1,y1),P2(x2,y2),P(x,y),則x1+x2=2x,y1+y2=2y
∵x12+2y12=2,x22+2y22=2
兩式相減可得:(x1-x2)×2x+2(y1-y2)×2y=0
y1-y2
x1-x2
×
y
x
=-
1
2
,
∵直線l的斜率為k1(k1≠0),直線OP(O是原點(diǎn))的斜率為k2,
∴k1k2=-
1
2

故選A.
點(diǎn)評(píng):本題考查橢圓方程的性質(zhì)和應(yīng)用,考查點(diǎn)差法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,經(jīng)過點(diǎn)(0,
2
)
且斜率為k的直線l與橢圓
x2
2
+y2=1
有兩個(gè)不同的交點(diǎn)P和Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)橢圓與x軸正半軸、y軸正半軸的交點(diǎn)分別為A,B,是否存在常數(shù)k,使得向量
OP
+
OQ
AB
共線?如果存在,求k值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,過點(diǎn)M(-2,0)的直線l與橢圓
x22
+y2=1
交于p1、P2兩點(diǎn),點(diǎn)P是線段p1P2的中點(diǎn).設(shè)直線l的斜率為k1(k1≠0),直線OP的斜率為k2,則k1k2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知過點(diǎn)D(-2,0)的直線l與橢圓
x2
2
+y2=1交于不同的兩點(diǎn)A、B,點(diǎn)M是弦AB的中點(diǎn)
(Ⅰ)若
OP
=
OA
+
OB
,求點(diǎn)P的軌跡方程;
(Ⅱ)求|
MD
MA
|的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
①已知直線a,b和平面α,若a∥b,b∥α,則a∥α;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),則直線y=
b
a
x+m(m∈R)與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直;
⑤過M(2,0)的直線l與橢圓
x2
2
+y2=1交于P1P2兩點(diǎn),線段P1P2中點(diǎn)為P,設(shè)直線l斜率為k1(k≠0),直線OP的斜率為k2,則k1k2等于-
1
2

其中,正確命題的序號(hào)為
④⑤
④⑤

查看答案和解析>>

同步練習(xí)冊答案