滿足{x|x2=x,x∈R}?A⊆{不大于4的自然數(shù)}的所有集合A的個(gè)數(shù)是
7
7
分析:根據(jù)條件確定集合A的元素個(gè)數(shù)即可.
解答:解:因?yàn)閧x|x2=x,x∈R}={0,1},{不大于4的自然數(shù)}={0,1,2,3,4},
所以滿足{0,1}}?A⊆{0,1,2,3,4}的集合A={0,1,2},{0,1,3},{0,1,4},{0,1,2,3},{0,1,2,4},{0,1,3,4}.{0,1,2,3,4},共7個(gè).
故答案為:7
點(diǎn)評(píng):本題主要考查利用集合元素的關(guān)系確定集合個(gè)數(shù)問題,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•lnx+b•x2在點(diǎn)(1,f(1))處的切線方程為x-y-1=0.
(1)求f(x)的表達(dá)式;
(2)若f(x)滿足f(x)≥g(x)恒成立,則稱f(x)是g(x)的一個(gè)“上界函數(shù)”,如果函數(shù)f(x)為g(x)=
t
x
-lnx
(t為實(shí)數(shù))的一個(gè)“上界函數(shù)”,求t的取值范圍;
(3)當(dāng)m>0時(shí),討論F(x)=f(x)+
x2
2
-
m2+1
m
x
在區(qū)間(0,2)上極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時(shí),f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年上海市十一校高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

同步練習(xí)冊答案