在棱長(zhǎng)為1的正方體AC1中,O是底面A1B1C1D1的中心,則O到平面ABC1D1的距離為( 。
分析:根據(jù)題意,分析可得,要求的O到平面ABC1D1的距離,就是A1到平面ABC1D1的距離的一半,就是A1到AD1的距離的一半,計(jì)算可得答案.
解答:解:因?yàn)镺是A1C1的中點(diǎn),求O到平面ABC1D1的距離,
就是A1到平面ABC1D1的距離的一半,
就是A1到AD1的距離的一半.
所以,連接A1D與AD1的交點(diǎn)為P,則A1P的距離是:
O到平面ABC1D1的距離的2倍
O到平面ABC1D1的距離:
2
4

故選D
點(diǎn)評(píng):本題以正方體為載體,考查點(diǎn)面距離的計(jì)算,考查棱柱的結(jié)構(gòu)特征,考查空間想象能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

11、如圖所示在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)P在線(xiàn)段AD1上運(yùn)動(dòng),給出以下四個(gè)命題:
①異面直線(xiàn)C1P和CB1所成的角為定值;
②二面角P-BC1-D的大小為定值;
③三棱錐D-BPC1的體積為定值;
④直線(xiàn)CP與直線(xiàn)ABC1D1所成的角為定值.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,異面直線(xiàn)AB與CD1之間的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M和N分別為A1B1 和BB1的中點(diǎn),那么直線(xiàn)AM與CN所成角的余弦值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)如圖,在棱長(zhǎng)為1的正方體A'C中,過(guò)BD及B'C'的中點(diǎn)E作截面BEFD交C'D'于F.
(1)求截面BEFD與底面ABCD所成銳二面角的大;
(2)求四棱錐A'-BEFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2004•武漢模擬)(文科)在棱長(zhǎng)為1的正方體ABCD-A′B′C′D′中,AC′為對(duì)角線(xiàn),M、N分別為BB′,B′C′中點(diǎn),P為線(xiàn)段MN中點(diǎn).
(1)求DP和平面ABCD所成的角的正切;
(2)求四面體P-AC′D′的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案