【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,若截面為平行四邊形.
(1)求證:AB∥平面EFGH
(2)若AB=4,CD=6,求四邊形EFGH周長的取值范圍.
【答案】(1)證明見解析; (2) (8,12).
【解析】
(1)根據(jù)幾何體的結(jié)構(gòu)特征,利用線面平行的判定定理,即可證得平面;
(2)由平面,設(shè),根據(jù)四邊形為平行四邊形,求得,得到四邊形周長的表達(dá)式,即可求解.
(1)由題意,∵四邊形EFGH為平行四邊形,∴EF∥HG,
∵HG平面ABD,EF平面ABD,∴EF∥平面ABD,
又∵EF平面ABC,平面ABD∩平面ABC=AB,∴EF∥AB,
又∵AB平面EFGH,EF平面EFGH,∴AB∥平面EFGH.
同理可證,平面EFGH.
(2)設(shè),∵四邊形為平行四邊形,
∴,則,∴,
∴四邊形EFGH的周長,
又∵,∴,
即四邊形周長的取值范圍是(8,12).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)設(shè)函數(shù)的最小值為c,實(shí)數(shù)a,b滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x-k)ex.
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的值域;
(2)若時(shí),函數(shù)的最小值為,求的值和函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2017年2月底,90多所自主招生試點(diǎn)高校將陸續(xù)出臺(tái)2017年自主招生簡章,某校高三年級(jí)選取了在期中考試中成績優(yōu)異的100名學(xué)生作為調(diào)查對(duì)象,對(duì)是否準(zhǔn)備參加2017年的自主招生考試進(jìn)行了問卷調(diào)查,其中“準(zhǔn)備參加”“不準(zhǔn)備參加”和“待定”的人數(shù)如表:
準(zhǔn)備參加 | 不準(zhǔn)備參加 | 待定 | |
男生 | 30 | 6 | 15 |
女生 | 15 | 9 | 25 |
(1)在所有參加調(diào)查的同學(xué)中,在三種類型中用分層抽樣的方法抽取20人進(jìn)行座談交流,則在“準(zhǔn)備參加”“不準(zhǔn)備參加”和“待定”的同學(xué)中應(yīng)各抽取多少人?
(2)在“準(zhǔn)備參加”的同學(xué)中用分層抽樣方法抽取6人,從這6人中任意抽取2人,求至少有一名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型商場在2018年國慶舉辦了一次抽獎(jiǎng)活動(dòng)抽獎(jiǎng)箱里放有3個(gè)紅球,3個(gè)黑球和1個(gè)白球這些小球除顏色外大小形狀完全相同,從中隨機(jī)一次性取3個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱活動(dòng)另附說明如下:
凡購物滿含元者,憑購物打印憑條可獲得一次抽獎(jiǎng)機(jī)會(huì);
凡購物滿含元者,憑購物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會(huì);
若取得的3個(gè)小球只有1種顏色,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;
若取得的3個(gè)小球有3種顏色,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;
若取得的3個(gè)小球只有2種顏色,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.
抽獎(jiǎng)活動(dòng)的組織者記錄了該超市前20位顧客的購物消費(fèi)數(shù)據(jù)單位:元,繪制得到如圖所示的莖葉圖.
求這20位顧客中獲得抽獎(jiǎng)機(jī)會(huì)的顧客的購物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)結(jié)果精確到整數(shù)部分;
記一次抽獎(jiǎng)獲得的紅包獎(jiǎng)金數(shù)單位:元為X,求X的分布列及數(shù)學(xué)期望,并計(jì)算這20位顧客在抽獎(jiǎng)中獲得紅包的總獎(jiǎng)金數(shù)的平均值假定每位獲得抽獎(jiǎng)機(jī)會(huì)的顧客都會(huì)去抽獎(jiǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù).
若,直線l與x軸的交點(diǎn)為M,N是圓C上一動(dòng)點(diǎn),求的最小值;
若直線l被圓C截得的弦長等于圓C的半徑,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,拋物線上一點(diǎn)P的縱坐標(biāo)為3,且|PF|=4,過M(m,0)作拋物線C的切線MA(斜率不為0),切點(diǎn)為A.
(1)求拋物線C的方程;
(2)求證:以FA為直徑的圓過點(diǎn)M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
設(shè)平面上向量=(cosα,sinα) (0°≤α<360°),=(-,).
(1)試證:向量與垂直;
(2)當(dāng)兩個(gè)向量與的模相等時(shí),求角α.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com