【題目】某制造商月生產(chǎn)了一批乒乓球,隨機(jī)抽樣個進(jìn)行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)分組如下表

分組

頻數(shù)

頻率

10

20

50

20

合計(jì)

100

(1)請?jiān)谏媳碇醒a(bǔ)充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在上圖中畫出頻率分布直方圖;

(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是)作為代表.據(jù)此估計(jì)這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).

【答案】(1)見解析;(2) 40.00(mm)

【解析】

解:(1)頻率分布表如下:

分組

頻數(shù)

頻率


[39.95,39.97)

10

0.10

5

[39.97,39.99)

20

0.20

10

[39.99,40.01)

50

0.50

25

[40.01,40.03]

20

0.20

10

合計(jì)

100

1


注:頻率分布表可不要最后一列,這里列出,只是為畫頻率分布直方圖方便.

頻率分布直方圖如下:

(2)整體數(shù)據(jù)的平均值約為39.96×0.1039.98×0.2040.00×0.5040.02×0.20≈40.00(mm)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線處的切線與直線平行,求實(shí)數(shù)的值;

(Ⅱ)若函數(shù)在定義域上為增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅲ)若有兩個極值點(diǎn),且,,若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為的正的頂點(diǎn)在平面內(nèi),頂點(diǎn)在平面外的同一側(cè),點(diǎn),分別為,在平面內(nèi)的投影,設(shè),直線與平面所成的角為.若是以角為直角的直角三角形,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,近日我漁船編隊(duì)在島周圍海域作業(yè),在島的南偏西20°方向有一個海面觀測站,某時刻觀測站發(fā)現(xiàn)有不明船只向我漁船編隊(duì)靠近,現(xiàn)測得與相距31海里的處有一艘海警船巡航,上級指示海警船沿北偏西40°方向,以40海里/小時的速度向島直線航行以保護(hù)我漁船編隊(duì),30分鐘后到達(dá)處,此時觀測站測得間的距離為21海里.

(Ⅰ)求的值;

(Ⅱ)試問海警船再向前航行多少分鐘方可到島?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體ABCD中,若AB=CD= ,AC=BD=2,AD=BC= ,則直線AB與CD所成角的余弦值為(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域?yàn)镽的函數(shù)f(x),若滿足①f(0)=0;②當(dāng)x∈R,且x≠0時,都有xf'(x)>0;③當(dāng)x1≠x2 , 且f(x1)=f(x2)時,x1+x2<0,則稱f(x)為“偏對稱函數(shù)”. 現(xiàn)給出四個函數(shù):g(x)= ;φ(x)=ex﹣x﹣1.
則其中是“偏對稱函數(shù)”的函數(shù)個數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價:若用水量不超過12噸時,按4元/噸計(jì)算水費(fèi);若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過14噸時,超過14噸部分按7.80元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
( i)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過12噸的概率;
(ⅱ)試估計(jì)全市居民用水價格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)y(元)與月份x的散點(diǎn)圖,其擬合的線性回歸方程是 .若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ABCD,CD=2,△ABC是邊長為3的等邊三角形.

(1)求AD;

(2)求sinDAB

查看答案和解析>>

同步練習(xí)冊答案