【題目】已知:tan(α+ )=﹣ ,( <α<π).
(1)求tanα的值;
(2)求 的值.

【答案】
(1)解:∵tan(α+ )= =﹣ ,( <α<π),∴tanα=﹣5.
(2)解:∵tanα=﹣5= ,∴α為鈍角,∴sinα>0,cosα<0,

再結(jié)合sin2α+cos2α=1,可得cosα=﹣ ,

= =2 cosα=﹣


【解析】(1)直接利用同角三角函數(shù)的基本關(guān)系、兩角和的正切公式求得tanα的值.(2)利用同角三角函數(shù)的基本關(guān)系、及三角函數(shù)在各個象限中的符號,求得cosα的值,再利用二倍角公式、兩角差的正弦公式求得要求式子的值.
【考點精析】根據(jù)題目的已知條件,利用同角三角函數(shù)基本關(guān)系的運用的相關(guān)知識可以得到問題的答案,需要掌握同角三角函數(shù)的基本關(guān)系:;(3) 倒數(shù)關(guān)系:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+|x﹣5|.
(1)當(dāng)a=1時,求f(x)的最小值;
(2)如果對任意的實數(shù)x,都有f(x)≥1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(Ⅰ)求a,b的值;
(Ⅱ)判斷并證明函數(shù)y=f(x)在區(qū)間(﹣1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個口袋中裝有個紅球個白球,一次摸獎從中摸兩個球,兩個球顏色不同則為中獎.

(1)用表示一次摸獎中獎的概率

(2)若,設(shè)三次摸獎(每次摸獎后球放回)恰好有次中獎,求的數(shù)學(xué)期望;

(3)設(shè)三次摸獎(每次摸獎后球放回)恰好有一次中獎的概率,當(dāng)取何值時, 最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需把正弦曲線y=sinx上所有點(
A.向右平移 個單位長度,再將所得圖象上的點橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變
B.向左平移 個單位長度,再將所得圖象上的點橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變
C.向右平移 個單位長度,再將所得圖象上的點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變
D.向左平移 個單位長度,再將所得圖象上的點橫坐標(biāo)縮短為原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直平行六面體中,為棱上任意一點,為底面(除外)上一點,已知在底面上的射影為,若再增加一個條件,就能得到,現(xiàn)給出以下條件:

;②上;③平面;④直線在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認(rèn)為正確的都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為得到函數(shù)y=cos(2x+ )的圖象,只需將函數(shù)y=cos2x的圖象(
A.向左平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向右平移 個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有命題: ①y=|sinx﹣ |的周期是π;
②y=sinx+sin|x|的值域是[0,2];
③方程cosx=lgx有三解;
④ω為正實數(shù),y=2sinωx在 上遞增,那么ω的取值范圍是 ;
⑤在y=3sin(2x+ )中,若f(x1)=f(x2)=0,則x1﹣x2必為π的整數(shù)倍;
⑥若A、B是銳角△ABC的兩個內(nèi)角,則點P(cosB﹣sinA,sinB﹣cosA在第二象限;
⑦在△ABC中,若 ,則△ABC鈍角三角形.其中真命題個數(shù)為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

2)已知點.若點的極坐標(biāo)為,直線經(jīng)過點且與曲線相交于兩點,設(shè)線段的中點為,求的值.

查看答案和解析>>

同步練習(xí)冊答案