【題目】(2015·四川)設數(shù)列{an}的前n項和Sn=2an-a1 , 且a1, a2+1, a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{}的前n項和Tn , 求得|Tn-1|<成立的n的最小值.

【答案】
(1)

an=2n


(2)

10


【解析】(1)由已知Sn=2an-a1, 有an=Sn-Sn-1=2an-2an-1(a>1), 即an=2an-1(n>1), 從而a2=2a1 , a3=4a1 , 由因為a1 , a2 +1, a3成等差數(shù)列, 即a1+a3=2(a2+1), 所以a1+4a1=2(2a1+1),解得a1=2, 所以數(shù)列{an}是首項為2, 公比為2的等比數(shù)列,故an=2n
(2). 由(1)得=, 所以Tn=+++...+==1-, 由|Tn-1|<,得|1--1|<, 即2n>1000. 因為29=512<1000<1024=210, 所以n≥10, 于是, 使|Tn-1|<成立的n的最小值為10,。
【考點精析】解答此題的關鍵在于理解等比數(shù)列的定義的相關知識,掌握如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C所對的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·新課標I卷)Sn為數(shù)列{an}的前n項和.已知an>0,an2+2an=4Sn+3,
(1)求{an}的通項公式;
(2)設bn=,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·四川)在三棱住ABCA1B1C1中,∠BAC=90°,其正視圖和側視圖都是邊長為1的正方形,俯視圖是直角邊長為1的等腰直角三角形,設點M , N , P分別是ABBC , B1C1的中點,則三棱錐PA1MN的體積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設g(x)是f(x)的導函數(shù),討論g(x)的單調性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設g(x)是f(x)的導函數(shù),評論g(x)的單調性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項的和記為Sn.如果a4=-12,a8=-4

(1)求數(shù)列{an}的通項公式;

(2)Sn的最小值及其相應的n的值;

(3)從數(shù)列{an}中依次取出a1,a2,a4a8,,,構成一個新的數(shù)列{bn},求{bn}的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·湖南)某工作的三視圖如圖3所示,現(xiàn)將該工作通過切削,加工成一個體積盡可能大的正方體新工件,并使新工件的一個面落在原工作的一個面內(nèi),則原工件材料的利用率為(材料利用率=新工件的體積/原工件的體積)

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角所對的邊分別為,下列命題正確的是_____________

①總存在某個內(nèi)角,使得;

②存在某鈍角,有;

③若,則的最小角小于

查看答案和解析>>

同步練習冊答案