【題目】如圖,用K、A1A2三類不同的元件連接成一個系統(tǒng).當(dāng)K正常工作且A1、A2至少有一個正常工作時,系統(tǒng)正常工作,已知K、A1、A2正常工作的概率依次是0.90.8、0.8,則系統(tǒng)正常工作的概率為( )

A. 0.960 B. 0.864 C. 0.720 D. 0.576

【答案】B

【解析】試題分析:首先記K、A1A2正常工作分別為事件A、B、C,易得當(dāng)K正常工作與A1、A2至少有一個正常工作為相互獨立事件,而“A1、A2至少有一個正常工作“A1、A2都不正常工作為對立事件,易得A1、A2至少有一個正常工作的概率;由相互獨立事件的概率公式,計算可得答案.

解:根據(jù)題意,記KA1、A2正常工作分別為事件AB、C;

PA=0.9;

A1、A2至少有一個正常工作的概率為1﹣PP=1﹣0.2×0.2=0.96

則系統(tǒng)正常工作的概率為0.9×0.96=0.864;

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)在區(qū)間內(nèi)單調(diào)遞增;②函數(shù)在區(qū)間內(nèi)單調(diào)遞減;③函數(shù)在區(qū)間內(nèi)單調(diào)遞增;④當(dāng)時,函數(shù)有極小值;⑤當(dāng)時,函數(shù)有極大值.則上述判斷中正確的是(  )

A. ①② B.

C. ②③ D. ③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在,根據(jù)下列條件解三角形,其中有兩個解的是( )

A. b="10," A=450, C=600 B. a=6, c=5, B=600

C. a=7, b=5, A=600 D. a=14, b="16," A=450

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【湖南省2017屆高三長郡中學(xué)、衡陽八中等十三校重點中學(xué)第一次聯(lián)考數(shù)學(xué)(理)】

已知函數(shù).

(1)當(dāng)時,試求函數(shù)圖像過點的切線方程;

(2)當(dāng)時,若關(guān)于的方程有唯一實數(shù)解,試求實數(shù)的取值范圍;

(3)若函數(shù)有兩個極值點,且不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為實數(shù).

1若關(guān)于的不等式的解集為,求實數(shù)的值;

2)設(shè),當(dāng)時,求函數(shù)的最小值(用表示);

3若關(guān)于不等式的解集中恰好有兩個整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中

(1)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

(2)若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,以橢圓的左頂點為圓心作圓,設(shè)圓與橢圓交于點與點

1)求橢圓的方程;

2)求的最小值,并求此時圓的方程;

3)設(shè)點是橢圓上異于, 的任意一點,且直線分別與軸交于點, 為坐標(biāo)原點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在處有最小值為0.

(1)求的值;

(2)設(shè),

①求的最值及取得最值時的取值;

②是否存在實數(shù),使關(guān)于的方程上恰有一個實數(shù)解?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案