(本題滿分16分)
如圖,開發(fā)商欲對邊長為的正方形
地段進(jìn)行市場開發(fā),擬在該地段的一角建設(shè)一個景觀,需要建一條道路
(點
分別在
上),根據(jù)規(guī)劃要求
的周長為
.
(1)設(shè),求證:
;
(2)欲使的面積最小,試確定點
的位置.
(1),則
,
由已知得:,
, (2)當(dāng)
時,
的面積最小.
【解析】
試題分析:(1),
則,
由已知得:,
即…………………………4分
, …………………………8分
(2)由(1)知,
=
=. …………………………………………………12分
,
,即
時
的面積最小,最小面積為
.
,故此時
…………14分
所以,當(dāng)時,
的面積最小.………………………………16分
考點:本題考查了三角函數(shù)的實際運用
點評:對于三角函數(shù)的證明和應(yīng)用問題,除了要求學(xué)生掌握常見的三角變換公式之外,還要掌握三角函數(shù)的性質(zhì)
科目:高中數(shù)學(xué) 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(
,
、
是常數(shù),且
),對定義域內(nèi)任意
(
、
且
),恒有
成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知數(shù)列的前
項和為
,且
.?dāng)?shù)列
中,
,
.(1)求數(shù)列
的通項公式;(2)若存在常數(shù)
使數(shù)列
是等比數(shù)列,求數(shù)列
的通項公式;(3)求證:①
;②
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在
上的單調(diào)性;
(2)若存在,使
,則稱
為函數(shù)
的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求
的值;
(3)若在
上恒成立 , 求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com