(09年大豐調(diào)研) (16分)

已知函數(shù)(其中) ,

點(diǎn)從左到右依次是函數(shù)圖象上三點(diǎn),且.

(Ⅰ) 證明: 函數(shù)上是減函數(shù);

(Ⅱ)求證:是鈍角三角形;

(Ⅲ) 試問(wèn),能否是等腰三角形?若能,求面積的最大值;若不能,請(qǐng)說(shuō)明理由.

解析:(Ⅰ)  

…………………………

所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

(Ⅱ) 證明:據(jù)題意x1<x2<x3,

由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

)

…………………8分

是鈍角三角形……………………………………..10分

(Ⅲ)假設(shè)為等腰三角形,則只能是

 

 

  ①          …………………………………………..14分

而事實(shí)上,    ②

由于,故(2)式等號(hào)不成立.這與式矛盾. 所以不可能為等腰三角形..16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年大豐調(diào)研)(10分)已知斜三棱柱,,,在底面上的射影恰為的中點(diǎn),又知。

(I)求證:平面;

(II)求到平面的距離;

(III)求二面角余弦值的大小。

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年大豐調(diào)研)(10分)已知A是曲線ρ=3cosθ上任意一點(diǎn),求點(diǎn)A到直線ρcosθ=1距離的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年大豐調(diào)研)(10分)

設(shè)是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到倍,縱坐標(biāo)伸長(zhǎng)到倍的伸壓變換.

(Ⅰ)求矩陣的特征值及相應(yīng)的特征向量;

(Ⅱ)求逆矩陣以及橢圓的作用下的新曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年大豐調(diào)研)(14分) 某食品公司為了解某種新品種食品的市場(chǎng)需求,進(jìn)行了20天的測(cè)試,人為地調(diào)控每天產(chǎn)品的單價(jià)(元/件):前10天每天單價(jià)呈直線下降趨勢(shì)(第10天免費(fèi)贈(zèng)送品嘗),后10天呈直線上升,其中4天的單價(jià)記錄如下表:

時(shí)間(將第x天記為xx

1

10

11

18

單價(jià)(元/件)P

9

0

1

8

而這20天相應(yīng)的銷售量(百件/天)與對(duì)應(yīng)的點(diǎn)在如圖所示的半圓上.

(Ⅰ)寫出每天銷售收入(元)與時(shí)間(天)的函數(shù)關(guān)系式

(Ⅱ)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測(cè)試結(jié)果應(yīng)將單價(jià)定為多少元為好?(結(jié)果精確到1元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年大豐調(diào)研) (14分)

如圖,已知空間四邊形中,,的中點(diǎn).

求證:(1)平面CDE;

(2)平面平面. 

(3)若G為的重心,試在線段AE上確定一點(diǎn)F,使得GF平面CDE.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案