如圖,△ABO中,OA=OB,以O為圓心的圓經(jīng)過AB中點C,且分別交OA、OB于點E、F.
(1)求證:AB是⊙O切線;
(2)若∠B=30°,且AB=4 數(shù)學公式,求 數(shù)學公式的長(結果保留π)

證明:(1)連接OC,
∵OA=OB,C是AB的中點,
∴OC⊥AB.
∵點C在⊙O上,
∴AB是⊙O切線.(4分)
解:(2)∵OA=OB,∠B=30°,
∴∠EOF=120°.
∵C為AB的中點,AB=4 ,
∴BC=
在Rt△OCB中,令OC=r,則OB=2r,
列出方程為(2r)2-r2=( 2
解得:r=2.(3分)
的長==.(3分)
分析:(1)連接OC,利用等邊三角形底邊上的中線即是底邊上的高,即可證明.
(2)由∠B=30°,可求出圓心角,AB=4 ,解直角三角形可求出圓的半徑,然后利用弧長公式計算.
點評:本題綜合考查了圓的切線的判定定理的證明、等邊三角形的三線合一性質,及弧長公式的計算能力.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABO中,OA=OB,以O為圓心的圓經(jīng)過AB中點C,且分別交OA、OB于點E、F.
(1)求證:AB是⊙O切線;
(2)若∠B=30°,且AB=4
3
,求
ECF
的長(結果保留π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖已知O為坐標原點,∠AOB=30°,∠ABO=90°,且點A的坐標為(2,0).
(1)求點B的坐標;
(2)若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A、B、O 三點,求此二次函數(shù)的解析式;                             
(3)在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖2-1-2,在⊙O中,∠ABO=55°,則∠ACB等于(    )

2-1-2

A.35°             B.45°                 C.50°             D.60°

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復習(第2章 函數(shù)):2.14 函數(shù)的應用(解析版) 題型:解答題

如圖,△ABO中,OA=OB,以O為圓心的圓經(jīng)過AB中點C,且分別交OA、OB于點E、F.
(1)求證:AB是⊙O切線;
(2)若∠B=30°,且AB=4 ,求 的長(結果保留π)

查看答案和解析>>

同步練習冊答案