當(dāng)x取何值時(shí),復(fù)數(shù)z=(x2+x-2)i+(x2+3x+2)i
(1)是實(shí)數(shù)?
(2)是純虛數(shù)?
(3)對(duì)應(yīng)的點(diǎn)在第四象限?
【答案】分析:(1)利用復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i是實(shí)數(shù)時(shí),復(fù)數(shù)的虛部等于0,求出x值.
(2)利用復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i是純虛數(shù)時(shí),復(fù)數(shù)的虛部不等于0,且實(shí)部等于0,求出x值.
(3)利用復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i對(duì)應(yīng)的點(diǎn)在第四象限時(shí),x2+x-2>0,且x2+3x+2<0,求出x的取值范圍.
解答:解:(1)復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i是實(shí)數(shù)時(shí),復(fù)數(shù)的虛部等于0,
即 x2+3x+2=0,解得x=-1 或-2.
(2)復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i是純虛數(shù)時(shí),復(fù)數(shù)的虛部不等于0,且實(shí)部等于0,
∴x2+x-2=0,且 x2+3x+2≠0,解得  x=1.
(3)復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i對(duì)應(yīng)的點(diǎn)在第四象限時(shí),
x2+x-2>0,且x2+3x+2<0,解得x∈∅,
故不存在實(shí)數(shù)x,使復(fù)數(shù)z=(x2+x-2)+(x2+3x+2)i對(duì)應(yīng)的點(diǎn)在第四象限.
點(diǎn)評(píng):本題考查復(fù)數(shù)的實(shí)部、虛部的定義,復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系,以及第四象限內(nèi)的點(diǎn)的坐標(biāo)的特點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

22、當(dāng)x取何值時(shí),復(fù)數(shù)z=(x2+x-2)i+(x2+3x+2)i
(1)是實(shí)數(shù)?
(2)是純虛數(shù)?
(3)對(duì)應(yīng)的點(diǎn)在第四象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)實(shí)數(shù)m分別取何值時(shí),復(fù)數(shù)z=m2-3m-4+(m2+m)i為:
(1)虛數(shù)  
(2)純虛數(shù)   
(3)對(duì)應(yīng)點(diǎn)位于直線y=x上 
(4)對(duì)應(yīng)點(diǎn)在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

當(dāng)x取何值時(shí),復(fù)數(shù)z=(x2+x-2)i+(x2+3x+2)i
(1)是實(shí)數(shù)?
(2)是純虛數(shù)?
(3)對(duì)應(yīng)的點(diǎn)在第四象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

當(dāng)x取何值時(shí),復(fù)數(shù)z=(x2+x-2)i+(x2+3x+2)i
(1)是實(shí)數(shù)?
(2)是純虛數(shù)?
(3)對(duì)應(yīng)的點(diǎn)在第四象限?

查看答案和解析>>

同步練習(xí)冊(cè)答案