3.下列命題中是假命題的是( 。
A.?φ∈R,使函數(shù)f(x)=sin(2x+φ)是偶函數(shù)
B.?α,β∈R,使得cos(α+β)=cosα+cosβ
C.?m∈R,使$f(x)=(m-1)•{x^{{m^2}-4m+3}}$是冪函數(shù),且在(0,+∞)上遞減
D.?a,b∈R+,lg(a+b)≠lga+lgb

分析 舉出正例φ=$\frac{π}{2}$,可判斷A;舉出正例α=$\frac{3π}{4}$,β=$\frac{π}{2}$,可判斷B;舉出正例m=2,可判斷C;舉出反例a=b=2,可判斷D;

解答 解:當(dāng)φ=$\frac{π}{2}$時(shí),函數(shù)f(x)=sin(2x+φ)=cos2x為偶函數(shù),故A為真命題;
當(dāng)α=$\frac{3π}{4}$,β=$\frac{π}{2}$時(shí),cos(α+β)=-$\frac{\sqrt{2}}{2}$,cosα+cosβ=-$\frac{\sqrt{2}}{2}$,故B為真命題;
當(dāng)m=2時(shí),$f(x)=(m-1)•{x^{{m^2}-4m+3}}$=x-1是冪函數(shù),且在(0,+∞)上遞減,故C為真命題;
當(dāng)a=b=2時(shí),lg(a+b)=lga+lgb=lg4,故D是假命題,
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了全稱命題,特稱命題,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.點(diǎn)P是△ABC所在平面內(nèi)任一點(diǎn),$\overrightarrow{PG}$=$\frac{1}{3}$($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$),則點(diǎn)G的軌跡一定通過△ABC的( 。
A.重心B.內(nèi)心C.垂心D.外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法中不正確的是( 。
A.棱柱的各個(gè)側(cè)面都是平行四邊形B.棱錐的側(cè)面都是三角形
C.棱臺(tái)的所有側(cè)棱都相等D.圓柱的任意兩條母線互相平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示的陰影部分是由x軸,直線x=1及曲線y=ex-1圍成,現(xiàn)向矩形區(qū)域OABC內(nèi)隨機(jī)投擲一點(diǎn),則該點(diǎn)落在陰影部分的概率是( 。
A.$\frac{1}{e}$B.$\frac{1}{e-1}$C.$1-\frac{1}{e}$D.$\frac{e-2}{e-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x-a|.
(Ⅰ)若a=1,解不等式:f(x)≥4-|x-1|;
(Ⅱ)若f(x)≤1的解集為[0,2],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0),求mn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U={1,2,3,4,5,6},M={2,4,6},則∁UM=( 。
A.{2,4,6}B.{4,6}C.{1,3,5}D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f:x→2x+1是集合A到集合B的映射,若A={-2,1,3,m},B={-9,n,-1,5},則m-n等于( 。
A.-4B.-1C.0D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知A(-2,3,4),在y軸上求一點(diǎn)B,使|AB|=3$\sqrt{5}$,則點(diǎn)B的坐標(biāo)為(0,8,0)或(0,2,0) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$sin(\frac{π}{6}-α)=\frac{4}{5},cos(α+\frac{π}{3})$的值是(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案