【題目】圓x2+y2=8內(nèi)有一點P0(﹣1,2),AB為過點P0且傾斜角為α的弦;
(1)當 時,求AB的長;
(2)當弦AB被點P0平分時,求直線AB的方程.

【答案】
(1)解:直線AB的斜率k=tan =﹣1,

∴直線AB的方程為y﹣2=﹣(x+1),即x+y﹣1=0

∵圓心O(0,0)到直線AB的距離d= =

∴弦長|AB|=2 =2 =


(2)解:∵P0為AB的中點,OA=OB=r,

∴OP0⊥AB

= =﹣2,∴kAB=

∴直線AB的方程為y﹣2= (x+1),即x﹣2y+5=0


【解析】(1)根據(jù)直線的傾斜角求出斜率.因為直線AB過P0(﹣1,2),可表示出直線AB的解析式,利用點到直線的距離公式求出圓心到弦的距離,根據(jù)勾股定理求出弦的一半,乘以2得到弦AB的長;(2)因為弦AB被點P0平分,先求出OP0的斜率,然后根據(jù)垂徑定理得到OP0⊥AB,由垂直得到兩條直線斜率乘積為﹣1,求出直線AB的斜率,然后寫出直線的方程.
【考點精析】通過靈活運用直線的傾斜角和一般式方程,掌握當直線l與x軸相交時, 取x軸作為基準, x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當直線l與x軸平行或重合時, 規(guī)定α=0°;直線的一般式方程:關于的二元一次方程(A,B不同時為0)即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點P是邊長為1的正六邊形ABCDEF的邊上的一個動點,設 =x +y ,則x+y的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U為R,集合A={x|x2<4},B= (x﹣2)},則下列關系正確的是(
A.A∪B=R
B.A∪(B)=R
C.(A)∪B=R
D.A∩(B)=A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,已知函數(shù)f(x)=sin(3x+B)+cos(3x+B)是偶函數(shù),且b=f( ).
(1)求b.
(2)若a= ,求角C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場在一部向下運行的手扶電梯終點的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長AC為8米.該廣告畫最高點E到地面的距離為10.5米.最低點D到地面的距離6.5米.假設某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設此人到直線EC的距離為x米,試用x表示點M到地面的距離;
(2)此人到直線EC的距離為多少米,視角θ最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(a﹣2)x﹣2,a∈R.
(1)若關于x的不等式f(x)≤0的解集為[﹣1,2],求實數(shù)a的值;
(2)當a<0時,解關于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 , 的夾角為120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位實行休年假制度三年以來,50名職工休年假的次數(shù)進行的調(diào)查統(tǒng)計結果如表所示:
根據(jù)下表信息解答以下問題:

休假次數(shù)

0

1

2

3

人數(shù)

5

10

20

15


(1)從該單位任選兩名職工,用η表示這兩人休年假次數(shù)之和,記“函數(shù)f(x)=x2﹣ηx﹣1在區(qū)間(4,6)上有且只有一個零點”為事件A,求事件A發(fā)生的概率P;
(2)從該單位任選兩名職工,用ξ表示這兩人休年假次數(shù)之差的絕對值,求隨機變量ξ的分布列及數(shù)學期望Eξ.

查看答案和解析>>

同步練習冊答案