【題目】函數(shù)的圖像大致是( )
A.B.
C.D.
【答案】A
【解析】
由函數(shù)的解析式可以看出,函數(shù)的零點呈周期性出現(xiàn),且自變量趨向于正無窮大時,函數(shù)值在軸上下震蕩,幅度越來越小,而當(dāng)自變量趨向于負(fù)無窮大時,函數(shù)值在軸上下震蕩,幅度越來越大.觀察選項即可得出答案.
由函數(shù)的解析式可以看出,函數(shù)的零點呈周期性出現(xiàn),且自變量趨向于正無窮大時,函數(shù)值在軸上下震蕩,幅度越來越小,而當(dāng)自變量趨向于負(fù)無窮大時,函數(shù)值在軸上下震蕩,幅度越來越大.
對于A,符合上述分析,故A正確;
對于B,振幅變化規(guī)律與函數(shù)的性質(zhì)相悖,故B不正確;
對于C,是一個偶函數(shù)的圖像,而已知的函數(shù)不是一個偶函數(shù),故C不正確;
對于D,最高點離開原點的距離的變化趨勢不符合題意,故D不對確.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,,平面平面,為等邊三角形,為的中點.
(1)求證:平面平面;
(2)若是的中點,求證:平面,并求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖的折線圖是某超市2018年一月份至五月份的營業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( )
A.該超市2018年的前五個月中三月份的利潤最高
B.該超市2018年的前五個月的利潤一直呈增長趨勢
C.該超市2018年的前五個月的利潤的中位數(shù)為0.8萬元
D.該超市2018年前五個月的總利潤為3.5萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個圖形(圖1為第1個圖形)中的所有線段長的和為,則(1)______;(2)如果對,恒成立,那么線段的長度的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,,點在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為的直線與橢圓相交于,兩點,使得?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)營的一種商品進(jìn)行進(jìn)價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(元)與單價(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位40歲以上的女性職工共有60人,為了調(diào)查一下體重和年齡的關(guān)系,將這60人隨機(jī)按1~60編號,用系統(tǒng)抽樣的方法從中抽取10人,測量一下體重.
(1)若被抽出的號碼其中一個為7,則最后被抽出的號碼是多少?
(2)被抽取的10個人的體重(單位:),用莖葉圖表示如圖,求這10人體重的中位數(shù)與平均數(shù);
(3)從這10個人中體重超過的人中隨機(jī)抽取2人,參加健康指導(dǎo)培訓(xùn),求體重為的人被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸非負(fù)半軸為極軸)中,直線的方程為.
(1)求曲線的普通方程及直線的直角坐標(biāo)方程;
(2)設(shè)是曲線上的任意一點,求點到直線的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com