10.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實(shí)數(shù)b滿足$2f({log_2}b)+f({log_{\frac{1}{2}}}b)≤3f(1)$,則實(shí)數(shù)b的取值范圍是$[{\frac{1}{2},2}]$.

分析 函數(shù)f(x)是定義在R上的偶函數(shù),實(shí)數(shù)b滿足$2f({log_2}b)+f({log_{\frac{1}{2}}}b)≤3f(1)$,可得f(|log2b|)≤f(1),利用f(x)在區(qū)間[0,+∞)上單調(diào)遞增,可得|log2b|≤1,即可求出實(shí)數(shù)b的取值范圍.

解答 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),實(shí)數(shù)b滿足$2f({log_2}b)+f({log_{\frac{1}{2}}}b)≤3f(1)$,
∴f(|log2b|)≤f(1),
∵f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
∴|log2b|≤1,
∴-1≤log2b≤1,
∴b∈$[{\frac{1}{2},2}]$,
故答案為$[{\frac{1}{2},2}]$.

點(diǎn)評(píng) 本題考查函數(shù)的性質(zhì)和運(yùn)用,考查函數(shù)的奇偶性、單調(diào)性和運(yùn)用,考查對(duì)數(shù)不等式的解法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知$\sqrt{m}$+$\frac{1}{\sqrt{m}}$=3,求下列各式的值
(1)m+m-1
(2)m2+m-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知集合A={x|x≥1},B={x|x≥a},若A$\underline?B$,則實(shí)數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)y=f(x)是奇函數(shù).若當(dāng)x>0時(shí),f(x)=x+lgx,則當(dāng)x<0時(shí),f(x)=x-lg(-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若a>b>c,a+b+c=0,則下列各是正確的是( 。
A.ab>acB.ac>bcC.a|b|>|b|cD.ab>bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+ax2-1,且f'(1)=-1.
(1)求a的值;
(2)若對(duì)于任意x∈(0,+∞),都有f(x)-mx≤-1,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面之間坐標(biāo)系中,角α的終邊經(jīng)過點(diǎn)P(1,2).
(1)求tanα的值;
(2)求$\frac{sinα+2cosα}{2sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四棱錐P-ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點(diǎn)
(Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若直線PC與平面PAD所成角為45°,求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知定點(diǎn)Q($\sqrt{3}$,0),P為圓N:${(x+\sqrt{3})^2}+{y^2}=24$上任意一點(diǎn),線段QP的垂直平分線交NP于點(diǎn)M.
(Ⅰ)當(dāng)P點(diǎn)在圓周上運(yùn)動(dòng)時(shí),求點(diǎn)M (x,y) 的軌跡C的方程;
(Ⅱ)若直線l與曲線C交于A、B兩點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}=0$,求證:直線l與某個(gè)定圓E相切,并求出定圓E的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案