規(guī)定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且
C
0
x
=1
,這是組合數(shù)
C
m
n
(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求
C
3
-15
的值;
(2)設x>0,當x為何值時,
C
3
x
(
C
1
x
)
2
取得最小值?
(3)組合數(shù)的兩個性質;①
C
m
n
=
C
n-m
n
;②
C
m
n
+
C
m-1
n
=
C
m
n+1
.是否都能推廣到
C
m
x
(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
分析:(1)由題意可得
C
3
-15
=
(-15)(-16)(-17)
3!
,運算求得結果.
(2)根據(jù)
C
3
x
(
C
1
x
)
2
=
x(x-1)(x-2)
6x2
=
1
6
(x+
2
x
-3)
,再利用基本不等式求得獅子的最小值.
(3)性質①不能推廣,通過舉反例可知.性質②能推廣,它的推廣形式是
C
m
x
+
C
m-1
x
=
C
m
x+1
,x∈R,m是正整數(shù).
根據(jù)題中的規(guī)定化簡運算可以證得.
解答:解:(1)由題意可得
C
3
-15
=
(-15)(-16)(-17)
3!
=-680
.(4分)
(2)
C
3
x
(
C
1
x
)
2
=
x(x-1)(x-2)
6x2
=
1
6
(x+
2
x
-3)
.(6分)
∵x>0,故有 x+
2
x
≥2
2

當且僅當x=
2
時,等號成立.∴當x=
2
時,
C
3
x
(
C
1
x
)
2
取得最小值.(8分)
(3)性質①不能推廣,例如當x=
2
時,
C
1
2
有定義,但
C
2
-1
2
無意義; (10分)
性質②能推廣,它的推廣形式是
C
m
x
+
C
m-1
x
=
C
m
x+1
,x∈R,m是正整數(shù).(12分)
事實上,當m=1時,有
C
1
x
+
C
0
x
=x+1=
C
1
x+1

當m≥2時.
C
m
x
+
C
m-1
x
=
x(x-1)…(x-m+1)
m!
+
x(x-1)…(x-m-2)
(m-1)!

=
x(x-1)…(x-m+2)
(m-1)!
[
x-m+1
m
+1]
=
x(x-1)…(x-m+2)(x+1)
m !
=
C
m
x+1
.(14分)
點評:本題主要考查組合數(shù)的性質、二項式系數(shù)的性質,這是一道綜合性較強的題目,對學生的邏輯思維能力、推理論證
能力以及計算能力,均有較好的考查.在課本基本題型(組合數(shù)的性質)的基礎上有拓廣創(chuàng)新,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

規(guī)定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且Cx0=1,這是組合數(shù)Cnm(n、m是正整數(shù),且m≤n)的一種推廣.
(1) 求C-155的值;
(2)組合數(shù)的兩個性質:①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m.是否都能推廣到Cxm(x∈R,m是正整數(shù))的情形?
若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

規(guī)定Cmx=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且C0x=1,這是組合數(shù)Cmn(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C3-15的值;
(2)設x>0,當x為何值時,
C
3
x
(C
1
x
)2
取得最小值?
(3)組合數(shù)的兩個性質;
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推廣到Cmx(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
變式:規(guī)定Axm=x(x-1)…(x-m+1),其中x∈R,m為正整數(shù),且Ax0=1,這是排列數(shù)Anm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求A-153的值;
(2)排列數(shù)的兩個性質:①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整數(shù))是否都能推廣到Axm(x∈R,m是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(3)確定函數(shù)Ax3的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

規(guī)定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且CX0=1.這是組合數(shù)Cnm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求C-153的值;
(2)組合數(shù)的兩個性質:①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m是否都能推廣到Cxm(x∈R,m∈N*)的情形?若能推廣,請寫出推廣的形式并給予證明;若不能請說明理由.
(3)已知組合數(shù)Cnm是正整數(shù),證明:當x∈Z,m是正整數(shù)時,Cxm∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

規(guī)定
Cmx
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且CX0=1.這是組合數(shù)Cnm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求C-153的值;
(2)組合數(shù)的兩個性質:①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m是否都能推廣到Cxm(x∈R,m∈N*)的情形?若能推廣,請寫出推廣的形式并給予證明;若不能請說明理由.
(3)已知組合數(shù)Cnm是正整數(shù),證明:當x∈Z,m是正整數(shù)時,Cxm∈Z.

查看答案和解析>>

同步練習冊答案