【題目】如圖在四邊形PBCD中,,,,,沿AB把三角形PAB折起,使P,D兩點(diǎn)的距離為10,得到如圖所示圖形.

求證:平面平面PAC

若點(diǎn)EPD的中點(diǎn),求三棱錐的體積.

【答案】(Ⅰ)詳見解析;(Ⅱ)16.

【解析】

由題意得,所以平面ABCD,即,再求出,從而得平面PAC,由此能證明平面平面PAC

平面ABCD,得平面平面ABCD,從而平面PAD,所以三棱錐的體積:,由此能求出結(jié)果.

證明:由已知在圖中,,,

,,

平面ABCD,

,,

由平面幾何知識(shí)得,

,,

,平面PAC

平面PCD,平面平面PAC

解:平面ABCD,

平面平面ABCD,

,且平面PAD與平面ABCD的交線為AD,

平面PAD

,平面PAD,

三棱錐的體積:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,分別為、的中點(diǎn).

(1)證明:平面;

(2)已知與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.

(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?

(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),若數(shù)列滿足:對(duì)所有,,且當(dāng)時(shí),,則稱為“數(shù)列”,設(shè)R,函數(shù),數(shù)列滿足,).

(1)若,而數(shù)列,求的值;

(2)設(shè),證明:存在,使得數(shù)列,但對(duì)任意都不是數(shù)列;

(3)設(shè),證明:對(duì)任意,都存在,使得數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面上,給定非零向量,對(duì)任意向量,定義.

(1)若,求

(2)若,證明:若位置向量的終點(diǎn)在直線上,則位置向量的終點(diǎn)也在一條直線上;

(3)已知存在單位向量,當(dāng)位置向量的終點(diǎn)在拋物線上時(shí),位置向量終點(diǎn)總在拋物線上,曲線關(guān)于直線對(duì)稱,問直線與向量滿足什么關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為為參數(shù)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,且圓心C在直線l上.

求直線l的直角坐標(biāo)方程及圓C的極坐標(biāo)方程;

是直線l上一點(diǎn),是圓C上一點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為,它的一個(gè)頂點(diǎn)為,離心率.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于, 兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個(gè)季度的銷售額數(shù)據(jù)統(tǒng)計(jì)如下表(其中表示年第一季度,以此類推):

季度

季度編號(hào)x

銷售額y(百萬元)

1)公司市場部從中任選個(gè)季度的數(shù)據(jù)進(jìn)行對(duì)比分析,求這個(gè)季度的銷售額都超過千萬元的概率;

2)求關(guān)于的線性回歸方程,并預(yù)測該公司的銷售額.

附:線性回歸方程:其中,

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過, 兩點(diǎn),且圓心在直線上.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)過圓內(nèi)一點(diǎn)作兩條相互垂直的弦,當(dāng)時(shí),求四邊形的面積.

(3)設(shè)直線與圓相交于兩點(diǎn), ,且的面積為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案