【題目】在△ABC中,a、b、c是角A、B、C的對(duì)邊,則下列結(jié)論正確的序號(hào)是 . ①若a、b、c成等差數(shù)列,則B= ; ②若c=4,b=2 ,B= ,則△ABC有兩解;
③若B= ,b=1,ac=2 ,則a+c=2+ ; ④若(2c﹣b)cosA=acosB,則A= .
【答案】②③
【解析】解:對(duì)于①,由a、b、c成等差數(shù)列,得a+c=2b,即a2+c2+2ac=4b2 , cosB= = ,當(dāng)b2≠ac時(shí),B ,故①錯(cuò)誤;
對(duì)于②,若c=4,b=2 ,B= ,則sinC= > ,又c>b,
∴△ABC有兩解,故②正確;
對(duì)于③,∵B= ,b=1,ac=2 ,
∴b2=1=a2+c2﹣2accosB=a2+c2﹣6,則a2+c2=7,
∴ ,則a+c=2+ ,故③正確;
對(duì)于④,若(2c﹣b)cosA=acosB,則2sinCcosA﹣sinBcosA=sinAcosB,
∴2sinCcosA=sinC,則cosA= ,A= ,故④錯(cuò)誤.
∴正確的命題是②③.
所以答案是:②③.
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a6=0,S4=14.
(1)求an;
(2)將a2 , a3 , a4 , a5去掉一項(xiàng)后,剩下的三項(xiàng)按原來(lái)的順序恰為等比數(shù)列{bn}的前三項(xiàng),求數(shù)列{anbn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年雙十一期間,某電子產(chǎn)品銷(xiāo)售商促銷(xiāo)某種電子產(chǎn)品,該產(chǎn)品的成本為2元/件,通過(guò)市場(chǎng)分析,雙十一期間該電子產(chǎn)品銷(xiāo)售量y(單位:千件)與銷(xiāo)售價(jià)格x(單位:元)之間滿(mǎn)足關(guān)系式:y= +2x2﹣35x+170(其中2<x<8,a為常數(shù)),且已知當(dāng)銷(xiāo)售價(jià)格為3元/件時(shí),該電子產(chǎn)品銷(xiāo)售量為89千件. (Ⅰ)求實(shí)數(shù)a的值及雙十一期間銷(xiāo)售該電子產(chǎn)品獲得的總利潤(rùn)L(x);
(Ⅱ)銷(xiāo)售價(jià)格x為多少時(shí),所獲得的總利潤(rùn)L(x)最大?并求出總利潤(rùn)L(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(m+2cos2x)cos(2x+θ)為奇函數(shù),且f( )=0,其中m∈R,θ∈(0,π)
(Ⅰ)求函數(shù)f(x)的圖象的對(duì)稱(chēng)中心和單調(diào)遞增區(qū)間
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且f( + )=﹣ ,c=1,ab=2 ,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣lnx,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在點(diǎn) (1,f(1))處的切線(xiàn)方程;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值為 ,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)x∈(0,+∞)時(shí),求證:e2x3﹣2x>2(x+1)lnx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,g(x)=x2eax(a<0). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,角A,B,C的對(duì)邊分別是a,b,c且滿(mǎn)足(2a﹣c)cosB=bcosC.
(1)求角B的大;
(2)若△ABC的面積為 ,求a+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司設(shè)計(jì)如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線(xiàn)段(圖中的AB,DC)和兩個(gè)半圓構(gòu)成,設(shè)AB=xm,且x≥80.
(1)若內(nèi)圈周長(zhǎng)為400m,則x取何值時(shí),矩形ABCD的面積最大?
(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為 m2 , 則x取何值時(shí),內(nèi)圈周長(zhǎng)最?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com