【題目】如圖,在底面為菱形的四棱錐P-ABCD中,平面平面ABCD,為等腰直角三角形,,,點E,F分別為BC,PD的中點,直線PC與平面AEF交于點Q.
(1)若平面平面,求證:.
(2)求直線AQ與平面PCD所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)根據(jù)線面平行的判定定理證得平面,然后根據(jù)線面平行的性質(zhì)定理證得.(2)先根據(jù)四點共面,結(jié)合向量的線性運算,求得,也即求得位置.建立空間直角坐標(biāo)系,利用直線的方向向量和平面的法向量,求得線面角的正弦值.
(1)證明:因為,平面PC,平面PCD,
所以平面PCD.又因為平面PAB,平面平面,所以.
(2)解:連接PE.
因為,
所以,
則
設(shè),則.
因為A,E,Q,F四點共面,
所以,解得,則.
取AD的中點O,連接OC,OP,由題意可得OC,OD,OP兩兩垂直
如圖,建立空間直角坐標(biāo)系,
設(shè),則,,,.
所以,.
設(shè)平面PCD的一個法向量為,
則,令,得,即,
所以,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次運動會上,某單位派出了由6名主力隊員和5名替補隊員組成的代表隊參加比賽.
(1)如果隨機抽派5名隊員上場比賽,將主力隊員參加比賽的人數(shù)記為,求隨機變量的數(shù)學(xué)期望;
(2)若主力隊員中有2名隊員在練習(xí)比賽中受輕傷,不宜同時上場;替補隊員中有2名隊員身材相對矮小,也不宜同時上場,那么為了場上參加比賽的5名隊員中至少有3名主力隊員,教練員有多少種組隊方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線經(jīng)過曲線的焦點且與曲線相交于兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:
①函數(shù)與的圖象關(guān)于軸對稱;
②若函數(shù),則,都有;
③若函數(shù),在上單調(diào)遞增,則;
④若函數(shù),則函數(shù)的最小值為.
其中真命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,平面底面,且,,分別為,的中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),且的極小值為.
(Ⅰ)求和的值;
(Ⅱ)若過點可作三條不同的直線與曲線相切,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com