13.過圓(x-1)2+(y-2)2=2上一點(diǎn)(2,3)作圓的切線,則切線方程為(  )
A.x+y-5=0B.x+y-1=0C.x-y-5=0D.x-y-1=0

分析 求出切線的斜率,即可求出切線方程.

解答 解:由題意,圓心坐標(biāo)為C(1,2),
∴A(2,3),∴kAC=$\frac{2-3}{1-2}$=1,
∴切線的斜率為-1,
∴切線方程為y-3=-(x-2),即x+y-5=0.
故選:A.

點(diǎn)評(píng) 本題考查圓的切線方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在極坐標(biāo)系中的點(diǎn)(2,$\frac{π}{3}$)化為直角坐標(biāo)是( 。
A.$(1,-\frac{{\sqrt{3}}}{2})$B.$(-1,-\sqrt{3})$C.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$D.$(1,\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A{x|-1<x<2},B?{x|-3<x<1},則A∩B=(  )
A.(-3,2)B.(1,2)C.(-1,1)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知ABC-A1B1C1是正三棱柱,它的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都是2.
(Ⅰ)求異面直線A1C與B1C1所成角的余弦值大小;
(Ⅱ)求三棱錐C-ABC1的體積${V_{C-AB{C_1}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),又以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+4ρsinθ-3=0.
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),求|AB|的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點(diǎn)P是圓O:x2+y2=1上任意一點(diǎn),過點(diǎn)P作PQ⊥y軸于點(diǎn)Q,延長(zhǎng)QP到點(diǎn)M,使$\overrightarrow{QP}=\overrightarrow{PM}$.
(1)求點(diǎn)M的軌跡的方程;
(2)過點(diǎn)C(m,0)作圓O的切線l,交(1)中曲線E于A,B兩點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$f(n)=cos\frac{nπ}{3}$,則f(1)+f(2)+f(3)+…+f(2015)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知冪函數(shù)f(x)=x${\;}^{\frac{1}{{m}^{2}+m}}$(m∈N+).
(1)試確定該函數(shù)的定義域,并判斷該函數(shù)在其定義域上的單調(diào)性(不需證明);
(2)若該函數(shù)經(jīng)過點(diǎn)(2,$\sqrt{2}$),試確定m的值,并求出滿足條件f(2-a)>f(a-1)的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z=$\frac{2-i}{x-i}$為純虛數(shù),其中i為虛數(shù)單位,則實(shí)數(shù)x的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-3D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案