6.函數(shù)f(x)=ln(x+1)+ln(x-1)+cosx的圖象大致是( 。
A.B.C.D.

分析 先求出函數(shù)的定義域,排除CD,再根據(jù)函數(shù)值得變化趨勢(shì)判斷即可

解答 解:函數(shù)f(x)=ln(x+1)+ln(x-1)+cosx,
則函數(shù)的定義域?yàn)閤>1,故排除C,D,
∵-1≤cosx≤1,
∴當(dāng)x→+∞時(shí),f(x)→+∞,
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的圖象,考查同學(xué)們對(duì)函數(shù)基礎(chǔ)知識(shí)的把握程度以及數(shù)形結(jié)合的思維能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若sin(π-α)=$\frac{1}{3}$,且$\frac{π}{2}$≤α≤π,則sin2α的值為( 。
A.-$\frac{4\sqrt{2}}{9}$B.-$\frac{2\sqrt{2}}{9}$C.$\frac{2\sqrt{2}}{9}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.復(fù)數(shù)$\frac{2+i}{1-2i}$的虛部是(  )
A.-$\frac{3}{5}$B.-$\frac{3}{5}$iC.1D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.為了解籃球愛好者小李的投籃命中率與打籃球時(shí)間之間的關(guān)系,如表記錄了小李某月1號(hào)到5號(hào)每天打籃球的時(shí)間x(單位:小時(shí))與當(dāng)天投籃命中率y之間的關(guān)系:
 時(shí)間x 1 1.5 2 2.5 3
 命中率y 0.4 0.5 0.6 0.6 0.4
(Ⅰ)求小李這5天的平均投籃命中率
(Ⅱ)用線性回歸分析方法,預(yù)測(cè)小李該月6號(hào)打3.5小時(shí)籃球的投籃命中率(保留2位小數(shù)點(diǎn))
參考公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-{y}_{i})^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知z=ai(a∈R),(1+z)(1+i)是實(shí)數(shù),則|z+2|=( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某校為了解校園安全管理專項(xiàng)活動(dòng)的成效,對(duì)全校3000名學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“優(yōu)秀”、“良好”、“及格”、“不及格”四個(gè)等級(jí),現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示.
 等級(jí) 不及格 及格 良好 優(yōu)秀
 得分[70,90)[90,110)[110,130)[130,150]
 頻數(shù) 6 a 24 b
(Ⅰ)求a,b,c的值;
(Ⅱ)試估計(jì)該校安全意識(shí)測(cè)試評(píng)定為“優(yōu)秀”的學(xué)生人數(shù);
(Ⅲ)已知已采用分層抽樣的方法,從評(píng)定等級(jí)為“優(yōu)秀”和“良好”的學(xué)生中任選6人進(jìn)行強(qiáng)化培訓(xùn),現(xiàn)再?gòu)倪@6人中任選2人參加市級(jí)校園安全知識(shí)競(jìng)賽,求選取的2人中有1人為“優(yōu)秀”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合M={x|(x-3)(x+1)≥0},N={x|-2≤x≤2},則M∩N=( 。
A.[-2,-1]B.[-1,2]C.[-1,1]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)i是虛數(shù)單位,則復(fù)數(shù)$\frac{2+3i}{1-i}$等于$-\frac{1}{2}+\frac{5}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知集合A={x|2≤x≤6},集合B={x|3x-7≥8-2x}.
(1)求∁R(A∩B);
(2)若C={x|x≤a},且A∪C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案